Objective
To determine if proprioceptive impairments exist in patients with low back pain (LBP). We hypothesized that patients with LBP would exhibit larger trunk proprioception errors than healthy controls.
Design
Case-control study.
Setting
University laboratory.
Participants
24 patients with non-specific LBP and 24 age-matched healthy controls.
Interventions
Not applicable.
Main Outcome Measures
We measured trunk proprioception in all 3 anatomical planes using motion perception threshold, active repositioning, and passive repositioning tests.
Results
LBP patients had significantly greater motion perception threshold than controls (P<0.001)(1.3±0.9 vs. 0.8±0.6 degrees). Furthermore, all subjects had the largest motion perception threshold in the transverse plane (P<0.001) (1.2±0.7 vs. 1.0±0.8 degrees for all other planes averaged). There was no significant difference between LBP and healthy control groups in the repositioning tasks. Errors in active repositioning test were significantly smaller than in passive repositioning test (P=0.032) (1.9±1.2 vs. 2.3±1.4 degrees).
Conclusions
These findings suggest that impairments in proprioception may be detected in patients with LBP when assessed with a motion perception threshold measure.
The strength of surgical repairs of the vertical shear femoral neck fractures can be significantly augmented with the 2.7-mm locking plate. The construct with the cannulated screws was significantly stronger than the DHS construct.
The performance of two computerized algorithms for the detection of muscle onset and offset was compared. Standard deviation (SD) method, a commonly used algorithm, and approximated generalized likelihood ratio (AGLR) method, a more recently developed algorithm, were evaluated at different levels of background surface EMG (sEMG) activity. For this purpose, the amplitude ratio between the period of muscle inactivity and activity was varied from 0.125 to 1 in artificially assembled sEMG traces. In addition, 1230 real sEMG signals, obtained from various trunk muscles, were raised to a power of 3 to change the relative amplitude ratio. As the relative level of background activity increased, both the SD and AGLR methods produced longer latencies and detected fewer muscle responses, suggesting that a detection artifact can be introduced if the subject populations being compared have different levels of background muscle activity. Of the two methods, AGLR appears to be the least affected by background activity. However, above the ratio 0.8, results from AGLR are also unreliable particularly in detecting offsets. Average latency artifacts near this ratio were 8 ms for AGLR and 46 ms for SD.
The goal of this paper was to determine if trunk antagonist activation is associated with impaired neuromuscular performance. To test this theory, we used two methods to impair neuromuscular control: strenuous exertions and fatigue. Force variability (standard deviation of force signal) was assessed for graded isometric trunk exertions (10, 20, 40, 60, 80% of max) in flexion and extension, and at the start and end of a trunk extensor fatiguing trial. Normalized EMG signals for five trunk muscle pairs (RA rectus abdominis, EO external oblique, IO internal oblique, TE thoracic erector spinae, and LE lumbar erector spinae) were collected for each graded exertion, and at the start and end of a trunk extensor fatiguing trial. Force variability increased for more strenuous exertions in both flexion (P < 0.001) and extension (P < 0.001), and after extensor fatigue (P < 0.012). In the flexion direction, both antagonist muscles (TE and LE) increased activation for more strenuous exertions (P < 0.001). In the extension direction, all antagonist muscles except RA increased activation for more strenuous exertions (P < 0.05) and following fatigue (P < 0.01). These data demonstrate a strong relationship between force variability and antagonistic muscle activation, irrespective of where this variability comes from. Such antagonistic co-activation increases trunk stiffness with the possible objective of limiting kinematic disturbances due to greater force variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.