There are a few mammalian species that can modify their vocalizations in response to auditory experience--for example, some marine mammals use vocal imitation for reproductive advertisement, as birds sometimes do. Here we describe two examples of vocal imitation by African savannah elephants, Loxodonta africana, a terrestrial mammal that lives in a complex fission-fusion society. Our findings favour a role for vocal imitation that has already been proposed for primates, birds, bats and marine mammals: it is a useful form of acoustic communication that helps to maintain individual-specific bonds within changing social groupings.
SummaryVocal imitation has convergently evolved in many species, allowing learning and cultural transmission of complex, conspecific sounds, as in birdsong [1, 2]. Scattered instances also exist of vocal imitation across species, including mockingbirds imitating other species or parrots and mynahs producing human speech [3, 4]. Here, we document a male Asian elephant (Elephas maximus) that imitates human speech, matching Korean formants and fundamental frequency in such detail that Korean native speakers can readily understand and transcribe the imitations. To create these very accurate imitations of speech formant frequencies, this elephant (named Koshik) places his trunk inside his mouth, modulating the shape of the vocal tract during controlled phonation. This represents a wholly novel method of vocal production and formant control in this or any other species. One hypothesized role for vocal imitation is to facilitate vocal recognition by heightening the similarity between related or socially affiliated individuals [1, 2]. The social circumstances under which Koshik’s speech imitations developed suggest that one function of vocal learning might be to cement social bonds and, in unusual cases, social bonds across species.
Elephants can communicate using sounds below the range of human hearing ("infrasounds" below 20 hertz). It is commonly speculated that these vocalizations are produced in the larynx, either by neurally controlled muscle twitching (as in cat purring) or by flow-induced self-sustained vibrations of the vocal folds (as in human speech and song). We used direct high-speed video observations of an excised elephant larynx to demonstrate flow-induced self-sustained vocal fold vibration in the absence of any neural signals, thus excluding the need for any "purring" mechanism. The observed physical principles of voice production apply to a wide variety of mammals, extending across a remarkably large range of fundamental frequencies and body sizes, spanning more than five orders of magnitude.
Arousal-based physiological changes influence acoustic features of vocalizations in mammals. In particular, nonlinear phenomena are thought to convey information about the caller's arousal state. This hypothesis was tested in the infant African elephant (Loxodonta africana) roar, a call type produced in situations of arousal and distress. Ninety-two percent of roars exhibited nonlinear phenomena, with chaos being the most common type. Acoustic irregularities were strongly associated with elevated fundamental frequency values. Roars produced in situations of highest urgency, based on the occurrence of behavioral indicators of arousal, were characterized by the lowest harmonics-to-noise ratio; this indicates low tonality. In addition, roars produced in these situations lasted longer than those produced in contexts of lower presumed urgency. Testing the infant roars for individual distinctiveness revealed only a moderate classification result. Combined, these findings indicate that infant African elephant roars primarily function to signal the caller's arousal state. The effective communication of this type of information may allow mothers to respond differentially based on their infant's degree of need and may be crucial for the survival of infant African elephants in their natural environment.
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.