The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL), and the other a putative secreted isoform (s-KL). Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa), and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD), or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts.
αKlotho is a gene regulator of aging, increasing life expectancy when overexpressed and accelerating the development of aging phenotypes when inhibited. In mice, expression levels of the secreted isoform Klotho (s-KL) are very high in the brain, suggesting that s-KL activity may have an important role in the nervous system. Here we study the functional relevance at behavioural level of modifying s-KL levels in the aging brain. We used AAVrh10 vectors to deliver and sustained expression of s-KL in 6-and 12-monthold wild-type C57BL/6J males. This study demonstrates for we believe the first time in vivo that 6 months after a single injection of s-KL into the central nervous system, long-lasting and quantifiable enhancement of learning and memory capabilities are found. More importantly, cognitive improvement is also observable in 18-month-old mice treated once, at 12 months of age. These findings demonstrate the therapeutic potential of s-KL as a treatment for cognitive decline associated with aging.
Rapid prenatal diagnosis of aneuploidies by QF-PCR is a sensitive, efficient, and reliable assay. When applied in multiple pregnancies, it has the added value of allowing the assessment of zygosity in all cases, independently of chorionicity and fetal sex.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. There is no therapy for MLC patients, only supportive treatment. We show here a preclinical gene therapy approach for MLC using the Mlc1 knock-out mouse. An adeno-associated virus coding for human MLC1 under the control of the glial fibrillary acidic protein promoter was injected in the cerebellar subarachnoid space of Mlc1 knock-out and wild-type animals at 2 months of age, before the onset of the disease, as a preventive approach. We also tested a therapeutic strategy by injecting the animals at 5 months, once the histopathological abnormalities are starting, or at 15 months, when they have progressed to a more severe pathology. MLC1 expression in the cerebellum restored the adhesion molecule GlialCAM and the chloride channel ClC-2 localization in Bergmann glia, which both are mislocalized in Mlc1 knock-out model. More importantly, myelin vacuolation was extremely reduced in treated mice at all ages and correlated with the amount of expressed MLC1 in Bergmann glia, indicating not only the preventive potential of this strategy but also its therapeutic capacity. In summary, here we provide the first therapeutic approach for patients affected with MLC. This work may have also implications to treat other diseases affecting motor function such as ataxias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.