Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens.
BackgroundGenetic variation in the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region has been studied among fungi. However, the numbers of ITS sequence polymorphisms in the various Candida species and their associations with sources of invasive fungal infections remain poorly investigated. Here, we characterized the intraspecific and interspecific ITS diversity of Candida spp. strains collected from patients with bloodstream or oroesophageal candidiasis.MethodsWe selected cultures of representative medically important species of Candida as well as some rare and emerging pathogens. Identification was performed by micromorphology and by biochemical testing using an ID32C® system, as well as by the sequencing of rDNA ITS. The presence of intraspecific ITS polymorphisms was characterized based on haplotype networks, and interspecific diversity was characterized based on Bayesian phylogenetic analysis.ResultsAmong 300 Candida strains, we identified 76 C. albicans, 14 C. dubliniensis, 40 C. tropicalis, 47 C. glabrata, 34 C. parapsilosis (sensu stricto), 31 C. orthopsilosis, 3 C. metapsilosis, 21 Meyerozyma guilliermondii (C. guilliermondii), 12 Pichia kudriavzevii (C. krusei), 6 Clavispora lusitaniae (C. lusitaniae), 3 C. intermedia, 6 Wickerhamomyces anomalus (C. pelliculosa), and 2 C. haemulonii strains, and 1 C. duobushaemulonii, 1 Kluyveromyces marxianus (C. kefyr), 1 Meyerozyma caribbica (C. fermentati), 1 Pichia norvegensis (C. norvegensis), and 1 Lodderomyces elongisporus strain. Out of a total of seven isolates with inconsistent ID32C® profiles, ITS sequencing identified one C. lusitaniae strain, three C. intermedia strains, two C. haemulonii strains and one C. duobushaemulonii strain. Analysis of ITS variability revealed a greater number of haplotypes among C. albicans, C. tropicalis, C. glabrata and C. lusitaniae, which are predominantly related to endogenous sources of acquisition. Bayesian analysis confirmed the major phylogenetic relationships among the isolates and the molecular identification of the different Candida spp.ConclusionsMolecular studies based on ITS sequencing are necessary to identify closely related and emerging species. Polymorphism analysis of the ITS rDNA region demonstrated its utility as a genetic marker for species identification and phylogenetic relationships as well as for drawing inferences concerning the natural history of hematogenous infections caused by medically important and emerging Candida species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-015-0793-3) contains supplementary material, which is available to authorized users.
Sporotrichosis is a polymorphic chronic infection of humans and animals classically acquired after traumatic inoculation with soil and plant material contaminated with Sporothrix spp. propagules. An alternative and successful route of transmission is bites and scratches from diseased cats, through which Sporothrix yeasts are inoculated into mammalian tissue. The development of a murine model of subcutaneous sporotrichosis mimicking the alternative route of transmission is essential to understanding disease pathogenesis and the development of novel therapeutic strategies. To explore the impact of horizontal transmission in animals (e.g., cat-cat) and zoonotic transmission on Sporothrix fitness, the left hind footpads of BALB/c mice were inoculated with 5×106 yeasts (n = 11 S. brasiliensis, n = 2 S. schenckii, or n = 1 S. globosa). Twenty days post-infection, our model reproduced both the pathophysiology and symptomology of sporotrichosis with suppurating subcutaneous nodules that progressed proximally along lymphatic channels. Across the main pathogenic members of the S. schenckii clade, S. brasiliensis was usually more virulent than S. schenckii and S. globosa. However, the virulence in S. brasiliensis was strain-dependent, and we demonstrated that highly virulent isolates disseminate from the left hind footpad to the liver, spleen, kidneys, lungs, heart, and brain of infected animals, inducing significant and chronic weight loss (losing up to 15% of their body weight). The weight loss correlated with host death between 2 and 16 weeks post-infection. Histopathological features included necrosis, suppurative inflammation, and polymorphonuclear and mononuclear inflammatory infiltrates. Immunoblot using specific antisera and homologous exoantigen investigated the humoral response. Antigenic profiles were isolate-specific, supporting the hypothesis that different Sporothrix species can elicit a heterogeneous humoral response over time, but cross reaction was observed between S. brasiliensis and S. schenckii proteomes. Despite great diversity in the immunoblot profiles, antibodies were mainly derived against 3-carboxymuconate cyclase, a glycoprotein oscillating between 60 and 70 kDa (gp60-gp70) and a 100-kDa molecule in nearly 100% of the assays. Thus, our data broaden the current view of virulence and immunogenicity in the Sporothrix-sporotrichosis system, substantially expanding the possibilities for comparative genomic with isolates bearing divergent virulence traits and helping uncover the molecular mechanisms and evolutionary pressures underpinning the emergence of Sporothrix virulence.
Cladophialophora carrionii is one of the four major etiologic agents of human chromoblastomycosis in semi-arid climates. This species was studied using sequence data of the internal transcribed spacer region of rDNA, the partial β-tubulin gene and an intron in the translation elongation factor 1-alpha gene, in addition to morphology. With all genes a clear bipartition was observed, which corresponded with minute differences in conidiophore morphology. A new species, C. yegresii, was introduced, which appeared to be, in contrast to C. carrionii, associated with living cactus plants. All strains from humans, and a few isolates from dead cactus debris, belonged to C. carrionii, for which a lectotype was designated. Artificial inoculation of cactus plants grown from seeds in the greenhouse showed that both fungi are able to persist in cactus tissue. When reaching the spines they produce cells that morphologically resemble the muriform cells known as the “invasive form” in chromoblastomycosis. The tested clinical strain of C. carrionii proved to be more virulent in cactus than the environmental strain of C. yegresii that originated from the same species of cactus, Stenocereus griseus. The muriform cell expressed in cactus spines can be regarded as the extremotolerant survival phase, and is likely to play an essential role in the natural life cycle of these organisms.
Candidemia remains a major cause of morbidity and mortality in the health care environment. The epidemiology of Candida infection is changing, mainly in relation to the number of episodes caused by species C. non-albicans. The overall objective of this study was to evaluate the frequency of yeasts of the genus Candida, in a four-year period, isolated from blood of pediatric patients hospitalized in a public hospital of the city of São Paulo, Brazil. In this period, yeasts from blood of 104 patients were isolated and, the identified species of Candida by phenotypic and genotypic methods were: C. albicans (39/104), C. tropicalis (25/104), C. parapsilosis (23/104), Pichia anomala (6/104), C. guilliermondii (5/104), C. krusei (3/104), C. glabrata (2/104) and C. pararugosa (1/104). During the period of the study, a higher frequency of isolates of C. non-albicans (63.55%) (p = 0.0286) was verified. In this study we verified the increase of the non-albicans species throughout the years (mainly in 2009 and 2010). Thus, considering the peculiarities presented by Candida species, a correct identification of species is recommended to lead to a faster diagnosis and an efficient treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.