Anti-polysaccharide immunity is a key facet of protection against several bacterial pathogens. Problems exist with current polysaccharide vaccines and alternative strategies that deliver a protective response are needed. We have identified immunological peptide mimics of type 6B and 9V pneumococcal capsular polysaccharides that could be used as vaccine antigens. Peptides mimicking antigenic properties of serotype 6B capsular polysaccharide were obtained from a phage-displayed peptide library expressing dodecameric peptides, using a human monoclonal antibody (Db3G9). A murine monoclonal antibody (206, F-5) against the serotype 9V capsular polysaccharide identified three peptide mimotopes from the dodecameric peptide library and one from a random pentadecameric peptide library. In ELISA, binding of 206, F-5 and Db3G9 to phage displaying the selected mimotopes was significantly inhibited by type-specific pneumococcal polysaccharide. Peptides were conjugated to keyhole limpet haemocyanin and were used to immunise mice. Two peptides, MP13 and MP7, induced specific anti-6B and 9V polysaccharide antibodies, respectively. Mice immunised with MP7-keyhole limpet hemocyanin or MP13-keyhole limpet hemocyanin conjugate were significantly and specifically protected against a lethal challenge with pneumococci of the appropriate serotype. This study provides strong in vivo evidence that peptide mimics are alternatives to polysaccharide vaccines.Key words: Mimotope . Peptide . Polysaccharide . Streptococcus pneumoniae .Vaccine IntroductionStreptococcus pneumoniae (the pneumococcus) remains a major cause of morbidity and mortality worldwide, causing diseases such as pneumonia, septicaemia, meningitis and otitis media [1]. It is well known that protective immunity to S. pneumoniae can result from the development of specific antibodies against pneumococcal capsular polysaccharides. In 1983 a vaccine (Pneumovax) composed of a mixture of 23 capsular serotypes was licensed for use [1]. Unfortunately, this vaccine has proved to be ineffective for the most at risk groups, particularly infants. Problems arise because polysaccharide antigens cannot be To circumvent the T-independence problem, major research efforts focused on a vaccine in which protein is chemically conjugated to polysaccharide. In this form the polysaccharide is converted to a T-dependent antigen. This increases its immunogenicity and stimulates immunological memory. Recently, a conjugate vaccine (Prevenar) composed of seven capsular serotypes was licensed for use in infants. Undoubtedly, the conjugate vaccine has been successful in reducing invasive pneumococcal disease in children [3][4][5]. However, the purification of polysaccharide, the need for multiple protein conjugations and the quality control issues make this a very expensive approach. Added to this is the question of the very restricted serotype coverage by the vaccine and the possibility that the low serotype coverage increases the opportunity for serotype replacement [6][7][8][9].An alternative approach is...
Astrocytes regulate neuronal activity and blood brain barrier through tiny plasma membrane branches or astrocytic processes (APs) making contact with synapses and brain vessels. Several transmitters released by astrocytes and exerting their action on several receptor classes expressed by astrocytes themselves influence their physiology. Here we found that APs are dynamically modulated by purines. In live imaging experiments carried out in rat hippocampal astrocytes, Gq-coupled P2Y1 receptor blockade with the selective antagonist MRS2179 (1 μM) or inhibition of its effector phospholipase C using U73122 (3 μM) produced APs retraction, while stimulation of the same receptor with the selective agonist 2MeSADP (100 μM) increased their number. Since astrocytes, among other transmitters, release ATP by several mechanisms including connexin hemichannels, we used the connexin hemichannel inhibitor carbenoxolone (100 μM) and APs retraction was observed. In our system we then measured expression or function of channels important for modulation of volume transmission and K+ buffering, aquaporin-4, and K+ inward rectifying (Kir) channels, respectively. Aquaporin-4 expression level did not change whereas, in whole-cell patch-clamp recordings performed to measure Kir current, we observed an increase in K+ current in all conditions where APs number was reduced. These data are supporting the idea of a dynamic modulation of astrocytic processes by purinergic signal, strengthening the role of purines in brain homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.