Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.
BACKGROUND AND PURPOSETumour cell migration and adhesion constitute essential features of metastasis. G-protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. Here, we investigated the involvement of GPR55 in migration and metastasis of colon cancer cells. EXPERIMENTAL APPROACHAdhesion and migration assays using the highly metastatic colon cancer cell line HCT116 and an in vivo assay of liver metastasis were performed. The GPR55 antagonist CID16020046, cannabidiol, a putative GPR55 antagonist and GPR55 siRNA were used to block GPR55 activity in HCT116 colon cancer cells. KEY RESULTSHCT116 cells showed a significant decrease in adhesion to endothelial cells and in migration after blockade with CID16020046 or cannabidiol. The inhibitory effects of CID16020046 or cannabidiol were averted by GPR55 siRNA knock down in cancer cells. The integrity of endothelial cell monolayers was increased after pretreatment of HCT116 cells with the antagonists or after GPR55 siRNA knockdown while pretreatment with lysophosphatidylinositol (LPI), the endogenous ligand of GPR55, decreased integrity of the monolayers. LPI also induced migration in GPR55 overexpressing HCT116 cells that was blocked by GPR55 antagonists. In a mouse model of metastasis, the arrest of HCT116 cancer cells in the liver was reduced after treatment with CID16020046 or cannabidiol. Increased levels of LPI (18:0) were found in colon cancer patients when compared with healthy individuals. CONCLUSIONS AND IMPLICATIONSGPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis.Abbreviations CBD, cannabidiol; CMV, cytomegalovirus; GPR55, G-protein coupled receptor 55; LPA, lysophosphatidic acid; LPI, lysophosphatidylinositol; MEK, mitogen-activated protein kinase kinase; NFAT, nuclear factor of activated T-cells; ROCK, Rho-associated coiled-coil containing protein kinase 1 BJP British Journal of Pharmacology
Pro-resolution functions were reported for Prostaglandin D2 (PGD2) in colitis, but the role of its two receptors, DP and in particular CRTH2 are less well defined. We investigated DP and CRTH2 expression and function during human and murine ulcerative colitis (UC). Expression of receptors was measured by flow cytometry on peripheral blood leukocytes, and by immunohistochemistry and immunoblotting in colon biopsies of patients with active UC and healthy individuals. Receptor involvement in UC was evaluated in a mouse model of DSS colitis. DP and CRTH2 expression changed in leukocytes of patients with active UC in a differential manner. In UC patients, DP showed higher expression in neutrophils but lower in monocytes as compared to control subjects. In contrast, CRTH2 was decreased in eosinophils, NK and CD3+ T cells but not in monocytes and CD3+/CD4+ T cells. The decrease of CRTH2 on blood eosinophils clearly correlated with disease activity. DP correlated positively with disease activity in eosinophils but inversely in neutrophils. CRTH2 internalized upon treatment with PGD2 and 11-dehydroTXB2 in eosinophils of controls. Biopsies of UC patients revealed an increase of CRTH2-positive cells in the colonic mucosa and high CRTH2 protein content. The CRTH2 antagonist CAY10595 improved while the DP antagonist MK0524 worsened inflammation in murine colitis. DP and CRTH2 play differential roles in UC. Although expression of CRTH2 on blood leukocytes is downregulated in UC, CRTH2 is present in colon tissue where it may contribute to inflammation whereas DP likely promotes anti-inflammatory actions.
Background-Cannabinoids have antiinflammatory and antitumorigenic properties. Some cannabinoids, such as O-1602, have no or only little affinity to classical cannabinoid receptors but exert cannabinoid-like antiinflammatory effects during experimental colitis. Here, we investigated whether O-1602 shows antitumorigenic effects in colon cancer cells and whether it could reduce tumorigenesis in the colon in vivo.
In this article, the bioactive potential of red raspberry leaves, a by-product of this widely spread plant, mostly valued for its antioxidant-rich fruits, was determined. The polyphenolic profile and antioxidative properties of red raspberry leaf extract were determined and examined for potential biological activity. Cytotoxic effect, antioxidative/prooxidative effect, and effect on total glutathione concentration were determined in human laryngeal carcinoma (HEp2) and colon adenocarcinoma (SW 480) cell lines. SW 480 cells are more susceptible to raspberry leaf extract in comparison with HEp2 cells. The antioxidative nature of raspberry leaf extract was detected in HEp2 cells treated with hydrogen peroxide, as opposed to SW 480 cells, where raspberry leaf extract induced reactive oxygen species formation. Raspberry leaf extract increased total glutathione level in HEp2 cells. This effect was reinforced after 24 hours of recovery, indicating that induction was caused by products formed during cellular metabolism of compounds present in the extract. Comparison of the results obtained on these two cell lines indicates that cellular response to raspberry extract will depend on the type of the cells that are exposed to it. The results obtained confirmed the biological activity of red raspberry leaf polyphenols and showed that this traditional plant can supplement the daily intake of valuable natural antioxidants, which exhibit beneficial health effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.