Buffered methylmalonate (MMA) was injected s.c. into rats twice a day at 8 h intervals from 5 to 25 days of age (chronic treatment), or into 10-day-old rats three times a day at 1 h intervals (acute treatment). Control rats received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from cerebral cortex of rats. Na+,K+-ATPase activity was reduced by 30-40% in MMA-treated rats, whereas Mg2+-ATPase activity was not. In contrast, MMA at final concentrations ranging from 0.1 to 2.0 mM had no in vitro effect on these enzyme activities. However, when brain homogenates were incubated with 2 mM MMA before membrane preparation, Na+,K+-ATPase activity was decreased by 44%. Furthermore, this reduction was totally prevented by the simultaneous addition of glutathione and MMA, suggesting that oxidation of thiol groups or other oxidative damage to the enzyme could be responsible for this effect.
The present study investigated the effects of glutaric acid (GA), which predominantly accumulates in glutaric acidemia type I (GA-I), on some in vitro parameters of energy metabolism in cerebral cortex of rats. We first evaluated CO2 production from [U-14C] acetate, as well as ATP levels in brain of young Wistar rats. The effect of the acid on the activities of the respiratory chain complexes were also investigated. GA was tested at final concentrations ranging from 0.5 to 5.0 mM. GA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3.0 mM, ATP levels by 25% at the concentration of 3.0 mM, succinate:cytochrome C oxireductase (complex II plus CoQ plus complex III) by 25% at 5 mM concentration, and NADH:cytochrome C oxireductase (complex I plus CoQ plus complex Ill) by 25% at 2.5 and 5 mM concentrations. The results strongly indicate that GA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by GA-I.
Buffered propionic acid was injected s.c. into rats twice a day at 8 h intervals from the 6 to 21 days of age. Control rats received saline in the same volumes. The animals were weighed and killed by decapitation at 23 days. Whole brain and cerebral cortex were weighed and synaptic plasma membranes were prepared from cortex for the determination of Na+,K+-ATPase and Mg2+-ATPase activities. Body, whole brain and cortical weights were similar in the two groups, suggesting that propionic acid does not cause malnutrition in rats. Na+,K+-ATPase activity was significantly reduced by 30% in membranes from the propionate-treated group, whereas Mg2+-ATPase activity was not. In another set of experiments, synaptic plasma membranes were prepared from cerebral cortex of 23-day-old rats and incubated with propionic acid at final concentrations ranging from 0.1 to 2.0 mM. Na+,K+-ATPase activity, but not Mg2+-ATPase activity, was inhibited by 22-32%. Since propionic acid concentrations in plasma of chronically treated rats and of propionic acidemic children are of the same order of magnitude as those tested in vitro, the results suggest that the inhibition of Na+,K+-ATPase activity may be related to the neurological dysfunction of patients affected by propionic acidaemia.
S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2',7'-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.