Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1β. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1β, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1β secretion by murine macrophages. Hcy (100 μM) increases IL-1β synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent Nacetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1β production in Hcy-exposed macrophages, indicating the importance of ROS in this proinflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1β via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.
The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na + ,K + -ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na + ,K + -ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na + ,K + -ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na + ,K + -ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na + ,K + -ATPase activity is decreased in bipolar patients.
Apesar de a tecnologia ser uma ferramenta indispensável às conquistas humanas, falta pleno entendimento da sua evolução no tempo. A literatura analisa o progresso tecnológico num contexto pré-estabelecido e pontual, conseqüência do aspecto cultural, econômico, político e social que influencia o esforço humano na geração de tecnologias. A compreensão desta evolução se apresenta como importante para a educação científica e tecnológica baseada na ideia de que C&T e sociedades são dois sistemas interligados e interdependentes. A partir de uma pesquisa bibliográfica sobre C&T, não se pretendeu fazer o estudo do progresso tecnológico, que é condicionado a contextos particulares de um dado momento, mas uma análise que considerou um único processo, a história da humanidade. Como resultado identificamos cinco fases de mudanças na evolução da tecnologia através dos tempos. Concluiu-se que o dinamismo tecnológico, fruto da evolução da tecnologia, diminuiu o tempo das quatro primeiras fases (primitiva ou de subsistência, artesanal ou manufatureira, mecanizada ou industrial e de automação ou de ponta) no processo histórico e que a última (ética ou de sustentabilidade) revelou-se uma alternativa ideal que conduzirá os destinos da humanidade voltados ao progresso humano.
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation. Correspondence
Cystinosis is a systemic genetic disease caused by a lysosomal transport deficiency accumulating cystine in most tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are not fully understood. Studies performed in fibroblasts of cystinotic patients and in kidney cells loaded with cystine dimethyl ester (CDME) suggest that apoptosis is enhanced in this disease. Considering that oxidative stress is a known apoptosis inducer, our main objective was to investigate the effects of CDME loading on several parameters of oxidative stress in the kidney of young rats. Animals were injected twice a day with 1.6 micromol/g body weight CDME and/or 0.26 micromol/g body weight cysteamine (CSH) from the 16th to the 20th postpartum day and killed after 1 or 12 h. CDME induced lipoperoxidation and protein carbonylation and stimulated superoxide dismutase, glutathione peroxidase (GPx), and catalase activities, probably through the formation of superoxide anions, hydrogen peroxide, and hydroxyl free radicals. Coadministration of CSH, the drug used to treat cystinotic patients, prevented, at least in part, those effects, possibly acting as a scavenger of free radicals. These results suggest that the induction of oxidative stress might be one of the mechanisms leading to tissue damage in cystinotic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.