Purpose To evaluate the post-coronavirus disease-19 (COVID-19) outcome of thyroid function in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related thyrotoxicosis. Methods This was a single-center prospective study involving 29 patients (11 females, 18 males; median age 64 years, range: 43-85) with thyrotoxicosis diagnosed after hospitalization for COVID-19 and then followed-up for a median period of 90 days (range: 30-120) after hospital discharge. At follow-up, patients were evaluated for serum thyrotropin (TSH), freethyroxine (FT4), free-triiodiothyronine (FT3), TSH receptor antibodies (TRAb), thyroglobulin antibodies (TgAb), thyroperoxidase antibodies (TPOAb) and ultrasonographic thyroid structure. Results After recovery of COVID-19, serum TSH values significantly increased (P < 0.001) and FT4 values significantly decreased (P = 0.001), without significant change in serum FT3 (P = 0.572). At follow-up, 28 subjects (96.6%) became euthyroid whereas overt hypothyroidism developed in one case. At the ultrasound evaluation of thyroid gland, hypoecogenicity was found in 10 patients (34.5%) and in these cases serum TSH values tended to be higher than those without thyroid hypoecogenity (P = 0.066). All subjects resulted to be negative for TgAb, TPOAb and TRAb. Conclusion In a short-term follow-up, thyroid function spontaneously normalized in most subjects with SARS-CoV-2-related thyrotoxicosis. However, thyroid hypoecogenicity was found in a remarkable number of them and future longer-term studies are needed to clarify whether this ultrasonographic alteration may predispose to develop late-onset thyroid dysfunction.
BackgroundKisspeptin is a neuropeptide known for its role in the hypothalamic regulation of the reproductive axis. Following the recent description of kisspeptin and its 7-TM receptor, GPR54, in the dorsal root ganglia and dorsal horns of the spinal cord, we examined the role of kisspeptin in the regulation of pain sensitivity in mice.ResultsImmunofluorescent staining in the mouse skin showed the presence of GPR54 receptors in PGP9.5-positive sensory fibers. Intraplantar injection of kisspeptin (1 or 3 nmol/5 μl) induced a small nocifensive response in naive mice, and lowered thermal pain threshold in the hot plate test. Both intraplantar and intrathecal (0.5 or 1 nmol/3 μl) injection of kisspeptin caused hyperalgesia in the first and second phases of the formalin test, whereas the GPR54 antagonist, p234 (0.1 or 1 nmol), caused a robust analgesia. Intraplantar injection of kisspeptin combined with formalin enhanced TRPV1 phosphorylation at Ser800 at the injection site, and increased ERK1/2 phosphorylation in the ipsilateral dorsal horn as compared to naive mice and mice treated with formalin alone.ConclusionThese data demonstrate for the first time that kisspeptin regulates pain sensitivity in rodents and suggest that peripheral GPR54 receptors could be targeted by novel drugs in the treatment of inflammatory pain.
Dopamine (DA) axons in the developing striatum cluster in discrete areas called "DA islands". During the third postnatal week, most DA islands are no-longer detectable and the DA innervation becomes uniform. In this study we explored the relationship between the pattern of DA innervation and the number of striatal tyrosine hydroxylase positive (TH+) cells during early postnatal development. By using dedicated stereology we found that the newborn striatum contains striatal TH+ cells, which cluster around newly sprouted DA axons. The number of these cells decreases when DA axons develop a full pattern of striatal innervation. This condition suggests a causal relationship between the amount of striatal DA innervation and the presence of striatal DA neurons. A better knowledge of the mechanisms regulating the ontogenesis of the nigrostriatal DA system may pave the way to strategies of neurorescue of the DA system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.