The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta-taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis (UHPLC/Q-TOF-MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p < 0.001), by increase Fusobacterium (p < 0.001) and Sphingomonas (p = 0.024), while suffered a decrease in Actinobacteria (p < 0.001). As a consequence of the shift in microbiota composition, significant extracellular metabolomics changes were detected, showed 59 metabolites of the 120 identified significantly different in terms of relative abundance between the cariogenic/commensal biofilms (Rate of change > 2 and FDR < 0.05). Forty-two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, L-methionine, glutamic acid, and phenylalanine derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.