The Cedars, in coastal northern California, is an active site of peridotite serpentinization. The spring waters that emerge from this system feature very high pH, low redox potential, and low ionic concentrations, making it an exceptionally challenging environment for life. We report a multiyear, culture-independent geomicrobiological study of three springs at The Cedars that differ with respect to the nature of the groundwater feeding them. Within each spring, both geochemical properties and microbial diversity in all three domains of life remained stable over a 3-y period, with multiple samples each year. Between the three springs, however, the microbial communities showed considerable differences that were strongly correlated with the source of the serpentinizing groundwater. In the spring fed solely by deep groundwater, phylum Chloroflexi, class Clostridia, and candidate division OD1 were the major taxa with one phylotype in Euryarchaeota. Less-abundant phylotypes include several minor members from other candidate divisions and one phylotype that was an outlier of candidate division OP3. In the springs fed by the mixture of deep and shallow groundwater, organisms close to the Hydrogenophaga within Betaproteobacteria dominated and coexisted with the deep groundwater community members. The shallow groundwater community thus appears to be similar to those described in other terrestrial serpentinizing sites, whereas the deep community is distinctly different from any other previously described terrestrial serpentinizing community. These unique communities have the potential to yield important insights into the development and survival of life in these early-earth analog environments.biodiversity | extremophile | alkaliphile | small subunit rRNA | hydrogen
Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’.
Ralstonia solanacearum and Acidovorax avenae were isolated from a wastewater treatment system manufactured with polyacrylonitrile fiber. The investigation goal is to elucidate the effectiveness of Ralstonia solanacearum and Acidovorax avenae in treating acrylic acid from synthetic wastewater and industrial wastewater. The results reveal that Ralstonia solanacearum and Acidovorax avenae could utilize acrylic acid from synthetic wastewater for growth, when the initial acrylic acid concentration was below 1,009.1 mg/l and 1,383.4 mg/l, respectively. When the acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal ability reached 96.7% and 100%, respectively. Both strains could tolerate acrylamide toxicity, but only Ralstonia solanacearum could tolerate acrylonitrile toxicity. Ralstonia solanacearum and Acidovorax avenae could utilize acrylic acid from industrial wastewater for growth, when the initial acrylic acid concentration was below 1,741.1 mg/l and 1,431.2 mg/l, respectively. When the acrylic acid concentration was below 690.8 mg/l, the acrylic acid removal efficiency reached 83.5% and 62.2%, respectively. Whether the acrylic acid existed in synthetic wastewater or in industrial wastewater, the removal efficiency of acrylic acid by Ralstonia solanacearum exceeded that by Acidovorax avena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.