Micromechanical properties of biological cells are crucial for cells functions. Despite extensive study by a variety of approaches, an understanding of the subject remains elusive. We conducted a comparative study of the micromechanical properties of cultured alveolar epithelial cells with an oscillatory optical tweezer-based cytorheometer. In this study, the frequency-dependent viscoelasticity of these cells was measured by optical trapping and forced oscillation of either a submicron endogenous intracellular organelle (intra-cellular) or a 1.5microm silica bead attached to the cytoskeleton through trans-membrane integrin receptors (extra-cellular). Both the storage modulus and the magnitude of the complex shear modulus followed weak power-law dependence with frequency. These data are comparable to data obtained by other measurement techniques. The exponents of power-law dependence of the data from the intra- and extra- cellular measurements are similar; however, the differences in the magnitudes of the moduli from the two measurements are statistically significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.