The Mexico City Metropolitan Area (MCMA) produces a complex mixture of gases and aerosols from diverse sources, including burning of fossil fuels, biomass, and wastes, with a significant biogenic contribution. We present the first results of ongoing projects to study temporal and spatial variations of 14CO2 in the area. Temporal variations reconstructed from tree rings of Taxodium mucronatum indicate a considerable radiocarbon depletion, in accordance to the vast amount of fossil fuels burnt inside Mexico Valley, with values between 62 and 246‰ lower than background values for the 1962–1968 period, and lower by 51–88‰ for the 1983–2010 period. The lower dilution found for the last decades might indicate an increase in enriched 14CO2 sources. Results from the spatial distribution, as revealed from integrated CO2 samples and grasses from six points within the MCMA collected during the 2013 dry season, show variations between sites and sample types. For integrated CO2 samples, values range from 35.6‰ to 54.0‰, and for grasses between −86.8‰ and 40.7‰. For three of the sampling points, the grasses are significantly depleted, by up to ∼133‰, as compared to the corresponding integrated CO2 sample. This may result from differences in the carbon assimilation period and exposure to different CO2 sources. Higher-than-background Δ14C values were found for all integrated CO2 samples, presumably resulting from 14C-enriched CO2 derived from forest fires in the mountains during the sampling period. Results obtained so far confirm the complexity of the 14C cycle in the MCMA.
We present radiocarbon (14C) in tree rings from Mexico City and a reconstruction of fossil CO2 concentrations for the last five decades, as part of a research program to understand the 14C dynamics in this complex urban area. Background values were established by 14C concentrations in tree rings from a nearby clean area. Agreement between background and NH-zone 2 values indicate Taxodium mucronatum is a good biomonitor for annual atmospheric 14C variations. Values for the urban tree rings were significantly lower than background values, indicating a 14C depletion from fossil CO2 emissions. There is an increasing trend of fossil CO2 between 1960 and 1990, in agreement with the population growth and the increasing demand for fossil fuels in Mexico City. Between 1990 and 2000, there is an apparent decrease in fossil CO2 concentration, increasing again after 2000. The decrease in 2000, despite being of the same magnitude as the overall uncertainty, may reflect environmental policies that improved the energy efficiency and reduced CO2 emissions in the area. The increase in fossil CO2 concentration between 2000 and 2010 may be attributable to the significant growth of motor vehicle usage in Mexico City, which made transportation the main energy-demanding and -emitting sector.
Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13-87.98 μg kg(-1)), followed by Rh (0.28-36.81 μg kg(-1)) and Pt (0.106-7.21 μg kg(-1)). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.