A prediction of the standard ΛCDM cosmological model, also confirmed by N-body simulations, is that dark matter (DM) halos are teeming with numerous self-bound substructure, or subhalos. The precise properties of these subhalos represent important probes of the underlying cosmological model. In this work, we use data from the N-body Via Lactea II and ELVIS Milky Way-size simulations to learn about the structure of subhalos with masses 10 6 − 10 11 h −1 M . Thanks to a superb subhalo statistics, by taking a profileindependent approach, we study subhalo properties as a function of the distance to the host halo center and subhalo mass, and provide a set of fits that, including both dependences, accurately describe the subhalo structure. With this at hand, we also investigate the role of subhalos on the search for DM via its annihilation products. Indeed, previous work has shown that subhalos are expected to boost the DM signal of their host halos significantly. Yet, these works have traditionally assumed that subhalos exhibit similar structural properties than those of field halos of the same mass, while it is well known from simulations that subhalos are more concentrated. Building upon the results from our N-body data analysis, we refine the substructure boost model of Sánchez-Conde & Prada (2014). We find boost values that are a factor 2 − 3 higher than previous ones. We further refine our boost model to include unavoidable tidal stripping effects on the subhalo population. For field halos, this only introduces a moderate (∼ 20% − 30%) suppression of the boost. Yet, for subhalos like those hosting the dwarf satellite galaxies of the Milky Way, tidal stripping does play a critical role, the total boost for these objects being only at the level of a few tens of percent in the most optimistic cases. Finally, we provide a parametrization of the boost factor for field halos that can be safely applied over a wide halo mass range.
Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy Xray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ∼ 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ∼ 100 MeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.