The radius valley, a bifurcation in the size distribution of small, close-in exoplanets, is hypothesized to be a signature of planetary atmospheric loss. Such an evolutionary phenomenon should depend on the age of the star–planet system. In this work, we study the temporal evolution of the radius valley using two independent determinations of host star ages among the California–Kepler Survey (CKS) sample. We find evidence for a wide and nearly empty void of planets in the period–radius diagram at the youngest system ages (≲2–3 Gyr) represented in the CKS sample. We show that the orbital period dependence of the radius valley among the younger CKS planets is consistent with that found among those planets with asteroseismically determined host star radii. Relative to previous studies of preferentially older planets, the radius valley determined among the younger planetary sample is shifted to smaller radii. This result is compatible with an atmospheric loss timescale on the order of gigayears for progenitors of the largest observed super-Earths. In support of this interpretation, we show that the planet sizes that appear to be unrepresented at ages ≲2–3 Gyr are likely to correspond to planets with rocky compositions. Our results suggest that the size distribution of close-in exoplanets and the precise location of the radius valley evolve over gigayears.
There is growing evidence that the population of close-in planets discovered by the Kepler mission was sculpted by atmospheric loss, though the typical timescale for this evolution is not well-constrained. Among a highly complete sample of planet hosts of varying ages the age-dependence of the relative fraction of super-Earth and sub-Neptune detections can be used to constrain the rate at which some small planets lose their atmospheres. Using the California-Kepler Survey (CKS) sample, we find evidence that the ratio of super-Earth to sub-Neptune detections rises monotonically from 1 to 10 Gyr. Our results are in good agreement with an independent study focused on stars hotter than the Sun, as well as with forward modeling simulations incorporating the effects of photoevaporation and a CKS-like selection function. We find the observed trend persists even after accounting for the effects of completeness or correlations between age and other fundamental parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.