Iterated stockholder atoms are produced by dividing molecular electron densities into sums of overlapping, near-spherical atomic densities. It is shown that there exists a good correlation between the overlap of the densities of two atoms and the order of the covalent bond between the atoms (as given by simple valence rules). Furthermore, iterated stockholder atoms minimise a functional of the charge density, and this functional can be expressed as a sum of atomic contributions, which are related to the deviation of the atomic densities from spherical symmetry. Since iterated stockholder atoms can be obtained uniquely from the electron density, this work gives an orbital-free method for predicting bond orders and atomic anisotropies from experimental or theoretical charge density data.
The Coiled Coil Domain Containing Protein 88B (CCDC88B) gene is associated with susceptibility to several inflammatory diseases in humans and its inactivation in mice protects against acute neuroinflammation and models of intestinal colitis. We report that mice lacking functional CCDC88B (Ccdc88b Mut) are defective in several dendritic cells (DCs)-dependent inflammatory and immune reactions in vivo. In these mice, an inflammatory stimulus (LPS) fails to induce the recruitment of DCs into the draining lymph nodes (LNs). In addition, OVA-pulsed Ccdc88b Mut DCs injected in the footpad do not induce recruitment and activation of antigen-specific CD4 + and CD8 + T cells in their draining LN. Experiments in vitro indicate that this defect is independent of the ability of mutant DCs to capture and present peptide antigen to T cells. Rather, kinetic analyses in vivo of wild-type and Ccdc88b Mut DCs indicate a reduced migration capacity in the absence of the CCDC88B protein expression. Moreover, using time-lapse light microscopy imaging, we show that Ccdc88b Mut DCs have an intrinsic motility defect. Furthermore, in vivo studies reveal that these reduced migratory properties lead to dampened contact hypersensitivity reactions in Ccdc88b mutant mice. These findings establish a critical role of CCDC88B in regulating movement and migration of DCs. Thus, regulatory variants impacting Ccdc88b expression in myeloid cells may cause variable degrees of DC-dependent inflammatory response in situ, providing a rationale for the genetic association of CCDC88B with several inflammatory and autoimmune diseases in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.