Abstract. UML class diagrams (UCDs) are the de-facto standard formalism for the analysis and design of information systems. By adopting formal language techniques to capture constraints expressed by UCDs one can exploit automated reasoning tools to detect relevant properties, such as schema and class satisfiability and subsumption between classes. Among the reasoning tasks of interest, the basic one is detecting full satisfiability of a diagram, i.e., whether there exists an instantiation of the diagram where all classes and associations of the diagram are non-empty and all the constraints of the diagram are respected. In this paper we establish tight complexity results for full satisfiability for various fragments of UML class diagrams. This investigation shows that the full satisfiability problem is ExpTime-complete in the full scenario, NP-complete if we drop isa between relationships, and NLogSpace-complete if we further drop covering over classes. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.