Low-density arrays for quantitative real-time PCR (qPCR) are increasingly being used as an experimental technique for miRNA expression profiling. As with gene expression profiling using microarrays, data from such experiments needs effective analysis methods to produce reliable and high-quality results. In the pre-processing of the data, one crucial analysis step is normalization, which aims to reduce measurement errors and technical variability among arrays that might have arisen during the execution of the experiments. However, there are currently a number of different approaches to choose among and an unsuitable applied method may induce misleading effects, which could affect the subsequent analysis steps and thereby any conclusions drawn from the results. The choice of normalization method is hence an important issue to consider. In this study we present the comparison of a number of data-driven normalization methods for TaqMan low-density arrays for qPCR and different descriptive statistical techniques that can facilitate the choice of normalization method. The performance of the normalization methods was assessed and compared against each other as well as against standard normalization using endogenous controls. The results clearly show that the data-driven methods reduce variation and represent robust alternatives to using endogenous controls.
Background: With the advent of microarray technology, it has become feasible to identify virtually all genes in an organism that are induced by developmental or environmental changes. However, relying solely on gene expression data may be of limited value if the aim is to infer the underlying genetic networks. Development of computational methods to combine microarray data with other information sources is therefore necessary. Here we describe one such method.
Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.