KAI2 proteins are plant α/β hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate that Pisum sativum KAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.
Cryptochromes (CRYs) are evolutionarily conserved photoreceptors that mediate various light-induced responses in bacteria, plants, and animals. Plant cryptochromes govern a variety of critical growth and developmental processes including seed germination, flowering time and entrainment of the circadian clock. CRY’s photocycle involves reduction of their flavin adenine dinucleotide (FAD)-bound chromophore, which is completely oxidized in the dark and semi to fully reduced in the light signaling-active state. Despite the progress in characterizing cryptochromes, important aspects of their photochemistry, regulation, and light-induced structural changes remain to be addressed. In this study, we determine the crystal structure of the photosensory domain of Arabidopsis CRY2 in a tetrameric active state. Systematic structure-based analyses of photo-activated and inactive plant CRYs elucidate distinct structural elements and critical residues that dynamically partake in photo-induced oligomerization. Our study offers an updated model of CRYs photoactivation mechanism as well as the mode of its regulation by interacting proteins.
Historically, the study of plants has greatly advanced human knowledge. Numerous scientific landmarks were first discovered in plants including the laws of genetic heredity, cytogenetics,
The α/β hydrolase KARRIKIN INSENSITIVE-2 (KAI2) mediates the perception of smoke-derived butenolides (karrikins) and an elusive endogenous hormone (KAI2-ligand, KL) found in all land plants. It has been suggested that KAI2 gene duplication and sub-functionalization events play an adaptative role for diverse environments by altering the receptor responsiveness to specific KLs. These diversification occurrences are exemplified by the variable number of functional KAI2 receptors among different plant species. Legumes represent one of the largest families of flowering plants and contain many essential agronomic crops. Along the legume lineage the KAI2 gene underwent a duplication event resulting in KAI2A and KAI2B. Here we show that the model legume, Pisum sativum (Ps), expresses three distinct KAI2 homologues, two of which, KAI2A and KAI2B have uniquely sub-functionalized. We characterize biochemically the distinct ligand sensitivities between these divergent receptors and report the first crystal structure of PsKAI2 in apo and butenolide-bound states. Our study provides a comprehensive examination of the specialized ligand binding ability of legume KAI2A and KAI2B and sheds light on the perception and enzymatic mechanism of the KAI2-butenolide complex.
Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lettuce (Lactuca sativa) cv. Grand Rapids germinates in response to nanomolar karrikinolide (KAR1). Lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), which in Arabidopsis (Arabidopsis thaliana) encodes a receptor that is required for KAR responses. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of imbibition. Through cross-species complementation assays in Arabidopsis, we found that an LsKAI2b transgene confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of KAI2 proteins from lettuce and a fire-follower, whispering bells (Emmenanthe penduliflora). This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand specificity of KAI2. Further support for the importance of these residues was found through a broader comparison of pocket residues among 281 KAI2 proteins from 184 asterid species. Almost all KAI2 proteins had either Tyr or Phe identity at position 124. Genes encoding Y124-type KAI2 are more broadly distributed in asterids than F124-type KAI2. Substitutions at residues 96, 124, 139, and 161 in Arabidopsis KAI2 produced a broad array of responses to KAR1, KAR2, and rac-GR24. This suggests that the diverse ligand preferences observed among KAI2 proteins in plants could have evolved through relatively few mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.