CO 2 transformations using a one-pot two-step method are presented herein. The purpose of the method is to give access to a variety of valueadded products and notably to generate chiral carbon centers. The crucial first step consists in the selective double hydroboration of CO 2 catalyzed by an iron hydride complex. The product obtained with this 4 e reduction is a rare bis(boryl)acetal, compound 1, which is subjected in situ to three different reactions in a second step. The first reaction concerns a condensation reaction with (diisopropyl)phenylamine affording the corresponding imine 2. In the second and third reaction, intermediate 1 reacts with triazol-5-ylidene (Enders' carbene) to afford compounds 3 or 4, depending on the reaction conditions. In both compounds, CC bonds are formed, and chiral centers are generated from CO 2 as the only source of carbon. Compound 4 exhibits two chiral centers obtained in a diastereoselective manner in a formose-type mechanism. We proved that the remaining boryl fragment plays a key role in this unprecedented stereocontrol. The interest of the method stands on the reactive and versatile nature of 1, giving rise to various complex molecules from a single intermediate. The complexity of a two-step method is compensated by the overall short reaction time (2 h for the larger reaction time), and mild reaction conditions (25 °C to 80 °C and 1 to 3 atm of CO 2).
CO 2 transformations using a one-pot two-step method are presented herein. The purpose of the method is to give access to a variety of valueadded products and notably to generate chiral carbon centers. The crucial first step consists in the selective double hydroboration of CO 2 catalyzed by an iron hydride complex. The product obtained with this 4 e reduction is a rare bis(boryl)acetal, compound 1, which is subjected in situ to three different reactions in a second step. The first reaction concerns a condensation reaction with (diisopropyl)phenylamine affording the corresponding imine 2. In the second and third reaction, intermediate 1 reacts with triazol-5-ylidene (Enders' carbene) to afford compounds 3 or 4, depending on the reaction conditions. In both compounds, C-C bonds are formed, and chiral centers are generated from CO 2 as the only source of carbon. Compound 4 exhibits two chiral centers obtained in a diastereoselective manner in a formose-type mechanism. We proved that the remaining boryl fragment plays a key role in this unprecedented stereocontrol. The interest of the method stands on the reactive and versatile nature of 1, giving rise to various complex molecules from a single intermediate. The complexity of a two-step method is compensated by the overall short reaction time (2 h for the larger reaction time), and mild reaction conditions (25 °C to 80 °C and 1 to 3 atm of CO 2 ). Video LinkThe video component of this article can be found at https://www.jove.com/video/60348/ 20 . In this latter reaction, C-C coupling and chiral carbon centers are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.