The emergence of Body Sensor Networks (BSNs) constitutes a new and fast growing trend for the development of daily routine applications. However, in the case of heterogeneous BSNs integration with Vehicular ad hoc Networks (VANETs) a large number of difficulties remain, that must be solved, especially when talking about the detection of human state factors that impair the driving of motor vehicles. The main contributions of this investigation are principally three: (1) an exhaustive review of the current mechanisms to detect four basic physiological behavior states (drowsy, drunk, driving under emotional state disorders and distracted driving) that may cause traffic accidents is presented; (2) A middleware architecture is proposed. This architecture can communicate with the car dashboard, emergency services, vehicles belonging to the VANET and road or street facilities. This architecture seeks on the one hand to improve the car driving experience of the driver and on the other hand to extend security mechanisms for the surrounding individuals; and (3) as a proof of concept, an Android real-time attention low level detection application that runs in a next-generation smartphone is developed. The application features mechanisms that allow one to measure the degree of attention of a driver on the base of her/his EEG signals, establish wireless communication links via various standard wireless means, GPRS, Bluetooth and WiFi and issue alarms of critical low driver attention levels.
Agriculture plays an essential role in Mexico’s economy. The agricultural sector has a 2.5% share of Mexico’s gross domestic product. Specifically, tomatoes have become the country’s most exported agricultural product. That is why there is an increasing need to improve crop yields. One of the elements that can considerably affect crop productivity is diseases caused by agents such as bacteria, fungi, and viruses. However, the process of disease identification can be costly and, in many cases, time-consuming. Deep learning techniques have begun to be applied in the process of plant disease identification with promising results. In this paper, we propose a model based on convolutional neural networks to identify and classify tomato leaf diseases using a public dataset and complementing it with other photographs taken in the fields of the country. To avoid overfitting, generative adversarial networks were used to generate samples with the same characteristics as the training data. The results show that the proposed model achieves a high performance in the process of detection and classification of diseases in tomato leaves: the accuracy achieved is greater than 99% in both the training dataset and the test dataset.
There is a group of users within the vehicular traffic ecosystem known as Vulnerable Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one hand, communication technologies to stay always ubiquitous connected, and on the other hand, automated technologies to assist or replace the human driver during the driving process. Autonomous vehicles are being visualized as a viable alternative to solve road accidents providing a general safe environment for all the users on the road specifically to the most vulnerable. One of the problems facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within the mobility environment, but also into the road society in a safe and efficient way. In this paper, we analyze and discuss how this integration can take place, reviewing the work that has been developed in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of vulnerable users and proposing solutions that contribute to solving these challenges.
In recent years, research has focused on generating mechanisms to assess the levels of subjects’ cognitive workload when performing various activities that demand high concentration levels, such as driving a vehicle. These mechanisms have implemented several tools for analyzing the cognitive workload, and electroencephalographic (EEG) signals have been most frequently used due to their high precision. However, one of the main challenges in implementing the EEG signals is finding appropriate information for identifying cognitive states. Here, we present a new feature selection model for pattern recognition using information from EEG signals based on machine learning techniques called GALoRIS. GALoRIS combines Genetic Algorithms and Logistic Regression to create a new fitness function that identifies and selects the critical EEG features that contribute to recognizing high and low cognitive workloads and structures a new dataset capable of optimizing the model’s predictive process. We found that GALoRIS identifies data related to high and low cognitive workloads of subjects while driving a vehicle using information extracted from multiple EEG signals, reducing the original dataset by more than 50% and maximizing the model’s predictive capacity, achieving a precision rate greater than 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.