Main conclusionThe elucidation of the molecular mechanisms of starch synthesis and mobilization in perennial woody tissues is of the utmost scientific and agricultural importance.Starch is the main carbohydrate reserve in plants and is fundamental in human nutrition and several industrial processes. In leaves, starch accumulated during the day is degraded throughout the night and the resulting sugars, glucose and maltose, are exported to the cytosol by the specialized transmembrane translocators pGT and MEX, respectively. Nevertheless, the degradation of the starch granule is a complex process not completely elucidated. While the mechanisms of starch mobilization during germination in the dead endosperm of cereal seeds are well described, the molecular and biochemical mechanisms involved in starch storage in the heterotrophic tissues of woody plants and its utilization in spring and winter are still puzzling. It is known that some biochemical steps of starch synthesis are conserved in heterotrophic tissues and in the leaves, but some aspects are particular to sink organs. From an agronomic standpoint, the knowledge on starch storage and mobilization in woody tissues is pivotal to understand (and to optimize) some common practices in the field that modify source–sink relationships, such as pruning and defoliation. Soluble sugars resulting from starch are also pivotal to cold adaptation, and in several fruits, such as banana and kiwifruit, starch may provide soluble sugars during ripening. In this review, we explore the recent advances on the molecular mechanisms and regulations involved in starch synthesis and mobilization, with a focus on perennial woody tissues.
Severe leaf removal decreases storage starch and sucrose in grapevine cv. Cabernet Sauvignon fruiting cuttings and modulates the activity of key enzymes and the expression of sugar transporter genes. Leaf removal is an agricultural practice that has been shown to modify vineyard efficiency and grape and wine composition. In this study, we took advantage of the ability to precisely control the number of leaves to fruits in Cabernet Sauvignon fruiting cuttings to study the effect of source-sink ratios (2 (2L), 6 (6L) and 12 (12) leaves per cluster) on starch metabolism and accumulation. Starch concentration was significantly higher in canes from 6L (42.13 ± 1.44 mg g DW) and 12L (43.50 ± 2.85 mg g DW) than in 2L (22.72 ± 3.10 mg g DW) plants. Moreover, carbon limitation promoted a transcriptional adjustment of genes involved in starch metabolism in grapevine woody tissues, including a decrease in the expression of the plastidic glucose-6-phosphate translocator, VvGPT1. Contrarily, the transcript levels of the gene coding the catalytic subunit VvAGPB1 of the VvAGPase complex were higher in canes from 2L plants than in 6L and 12L, which positively correlated with the biochemical activity of this enzyme. Sucrose concentration increased in canes from 2L to 6L and 12L plants, and the amount of total phenolics followed the same trend. Expression studies showed that VvSusy transcripts decreased in canes from 2L to 6L and 12L plants, which correlated with the biochemical activity of insoluble invertase, while the expression of the sugar transporters VvSUC11 and VvSUC12, together with VvSPS1, which codes an enzyme involved in sucrose synthesis, increased. Thus, sucrose seems to control starch accumulation through the adjustment of the cane sink strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.