c Primary amebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living ameba Naegleria fowleri. The drug of choice in treating PAM is the antifungal antibiotic amphotericin B, but its use is associated with severe adverse effects. Moreover, few patients treated with amphotericin B have survived PAM. Therefore, fast-acting and efficient drugs are urgently needed for the treatment of PAM. To facilitate drug screening for this pathogen, an automated, high-throughput screening methodology was developed and validated for the closely related species Naegleria gruberi. Five kinase inhibitors and an NFkappaB inhibitor were hits identified in primary screens of three compound libraries. Most importantly for a preclinical drug discovery pipeline, we identified corifungin, a water-soluble polyene macrolide with a higher activity against Naegleria than that of amphotericin B. Transmission electron microscopy of N. fowleri trophozoites incubated with different concentrations of corifungin showed disruption of cytoplasmic and plasma membranes and alterations in mitochondria, followed by complete lysis of amebae. In vivo efficacy of corifungin in a mouse model of PAM was confirmed by an absence of detectable amebae in the brain and 100% survival of mice for 17 days postinfection for a single daily intraperitoneal dose of 9 mg/kg of body weight given for 10 days. The same dose of amphotericin B did not reduce ameba growth, and mouse survival was compromised. Based on these results, the U.S. FDA has approved orphan drug status for corifungin for the treatment of PAM.
Entamoeba histolytica calreticulin (EhCRT) is remarkably immunogenic in humans (90-100% of invasive amoebiasis patients). Nevertheless, the study of calreticulin in this protozoan is still in its early stages. The exact location, biological functions, and its role in pathogenesis are yet to be fully understood. The aim of the present work is to determine the location of EhCRT in virulent trophozoites in vivo and the expression of the Ehcrt gene during the development of experimentally induced amoebic liver abscesses (ALA) in hamsters. Antibodies against recombinant EhCRT were used for the immunolocalization of EhCRT in trophozoites through confocal microscopy; immunohistochemical assays were also performed on tissue sections of ALAs at different times after intrahepatic inoculation. The expression of the Ehcrt gene during the development of ALA was estimated through both in situ RT-PCR and real-time RT-PCR. Confocal assays of virulent trophozoites showed a distribution of EhCRT in the cytoplasmic vesicles of different sizes. Apparently, EhCRT is not exported into the hepatic tissue. Real-time RT-PCR demonstrated an over-expression of the Ehcrt gene at 30 min after trophozoite inoculation, reaching a peak at 1-2 h; thereafter, the expression fell sharply to its original levels. These results demonstrate for the first time in an in vivo model of ALA, the expression of Ehcrt gene in E. histolytica trophozoites and add evidence that support CRT as a resident protein of the ER in E. histolytica species. The in vivo experiments suggest that CRT may play an important role during the early stages of the host-parasite relationship, when the parasite is adapting to a new environment, although the protein seems to be constitutively synthesized. Moreover, trophozoites apparently do not export EhCRT into the hepatic tissue in ALA.
Primary amebic meningoencephalitis (PAM) is a fatal infection caused by the free-living ameba Naegleria fowleri, popularly known as the “brain-eating ameba.” The drugs of choice in treating PAM are the antifungal amphotericin B and an antileishmanial miltefosine, but these are not FDA-approved for this indication and use of amphotericin B is associated with severe adverse effects. Moreover, very few patients treated with the combination therapy have survived PAM. Therefore, development of efficient drugs is a critical unmet need to avert future deaths of children. Since N. fowleri causes extensive inflammation in the brain it is important to select compounds that can enter brain to kill ameba. In this study, we identified two central nervous system (CNS) active compounds, ebselen and BAY 11-7082 as amebicidal with EC50 of 6.2 and 1.6 μM, respectively. The closely related BAY 11-7085 was also found active against N. fowleri with EC50 similar to BAY 11-7082. We synthesized a soluble ebselen analog, which had amebicidal activity similar to ebselen. Transmission electron microscopy of N. fowleri trophozoites incubated for 48 h with EC50 concentration of ebselen showed alteration in the cytoplasmic membrane, loss of the nuclear membrane, and appearance of electron-dense granules. Incubation of N. fowleri trophozoites with EC50 concentrations of BAY 11-7082 and BAY 11-7085 for 48 h showed the presence of large lipid droplets in the cytoplasm, disruption of cytoplasmic and nuclear membranes and appearance of several vesicles and chromatin residues. Blood-brain barrier permeable amebicidal compounds have potential as new drug leads for Naegleria infection.
cPainful blinding keratitis and fatal granulomatous amebic encephalitis are caused by the free-living amebae Acanthamoeba spp. Several prescription eye medications are used to treat Acanthamoeba keratitis, but the infection can be difficult to control because of recurrence of infection. For the treatment of encephalitis, no single drug was found useful, and in spite of the use of a combination of multiple drugs, the mortality rate remains high. Therefore, efficient, novel drugs are urgently needed for the treatment of amebic keratitis and granulomatous amebic encephalitis. In this study, we identified corifungin, a water-soluble polyene macrolide, as amebicidal. In vitro, it was effective against both the trophozoites and the cysts. Transmission electron microscopy of Acanthamoeba castellanii incubated with corifungin showed the presence of swollen mitochondria, electrondense granules, degeneration of cytoplasm architecture, and loss of nuclear chromatin structure. These changes were followed by lysis of amebae. Corifungin also induced the encystment process of A. castellanii. There were alterations in the cyst cell wall followed by lysis of the cysts. Corifungin is a promising therapeutic option for keratitis and granulomatous amebic encephalitis. Free-living Acanthamoeba spp. cause keratitis, a serious eye infection that can occur in healthy individuals wearing contact lenses, as well as chronic granulomatous amebic encephalitis (GAE) leading to death in immunocompromised persons. Acanthamoeba has a worldwide distribution and is the most common ameba found in the environment. Coincident with the number of Acanthamoeba keratitis cases in the United States has been an increase in developing countries. Wearing of contact lenses is now recognized as the leading risk factor for keratitis (1-3). In the United States, the estimated number of keratitis cases is 1.36 per million contact lens wearers (4, 5). GAE is a relatively rare disease. Approximately 150 cases have been reported worldwide (5). GAE results from inhalation of amebae through the nasal cavities and lungs, or introduction through skin lesions followed by access to the central nervous system by hematogenous spread or through the olfactory neuroepithelium (6). Clinical manifestations include headache, fever, nausea, vomiting, behavioral changes, stiff neck, lethargy, increased intracranial pressure, and, in the later stage, loss of consciousness, seizures, coma, and death (7-9).The drugs recommended for the treatment of Acanthamoeba keratitis include polyhexamethylene biguanide (0.02%) or chlorhexidine (0.02%) along with a diamidine (either 0.1% propamidine or 0.1% hexamidine) (10). Corticosteroids are applied topically to control corneal inflammation, pain, and scleritis, particularly following keratoplasty (11). While this antimicrobial treatment can kill the trophozoites, the resistance of Acanthamoeba cysts to antimicrobials can lead to the recurrence of keratitis. For GAE, combination therapies were found more successful than single-drug therapies, a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.