Background Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. Results To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. Conclusion Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.
Background Ultrasonography is one of the most important techniques that enable the detection and monitoring of pregnancy. One such study using this technique is the assessment of the hemodynamics of fetal and umbilical blood vessels. However, there is little data on blood flow in the placentomes, which is the basic structural unit of the sheep’s placenta. Therefore, the aim of this study was to determine the Doppler parameters in the arterial vessels of the caruncles, cotyledons and the umbilical cord as well as measuring venous flow rates during the entire gestation period of the sheep. Additionally, the usefulness of various other ultrasound parameters in the early diagnosis of pregnancy in sheep was analyzed. Results Most of the Doppler parameters in umbilical, cotyledonary and caruncular arteries were significantly correlated with the day of pregnancy (p < 0.01). In the early stages of pregnancy, the peak systolic velocity (PSV), regardless of the location of the artery, was significantly lower than that in the later stages of pregnancy (p < 0.01). PSV was also found to be significantly higher in the umbilical artery than in the cotyledonary and caruncular arteries (p < 0.01). Until the 50th day of pregnancy, the end diastolic velocity (EDV) was not found in the umbilical and cotyledonary arteries. EDV was significantly higher in the caruncular arteries than in the cotyledonary and umbilical arteries (p < 0.01). The resistance index (RI) and pulsatility index (PI) in the early stages of pregnancy were found to be significantly higher than that in the later stages of pregnancy (p < 0.01). The RI and PI were significantly lower in the caruncular arteries than in the arteries of the cotyledons and umbilical cord (p < 0.01). In the umbilical vein, all Doppler parameters were observed to be significantly higher than those in the placentomal veins (p < 0.01 or p < 0.05). Using transrectal ultrasound, pregnancy was detected between 20 and 28 days after mating. The ovaries were observed to have corpora lutea, the diameter of which was fairly consistent from the 17th to the 56th day of pregnancy. Conclusions It has been demonstrated that both the location of the arterial vessel in the placental-umbilical circulation and the gestational age have a significant impact on hemodynamic parameters. The results also provide new insights about the blood flow in caruncular and cotyledonary arteries, which could contribute to a more holistic understanding of hemodynamic changes in the placentas of sheep. Analyzing haemodynamic parameters in the umbilical and placental veins are preliminary studies in sheep, but it could inspire further research in this field. Furthermore, the research conducted confirms the practicality and convenience of transrectal ultrasonography in the early diagnosis of pregnancy in sheep and also indicates that the identification and imaging of the corpus luteum using B-mode ultrasonography can be a very early and simple method of confirming effective mating in sheep.
Background: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. Results: To characterize the molecular profile of the SAR and elucidate the mechanism of pacemaker function, we utilized the zebrafish transgenic line sqet33mi59BEt to isolate cells of the sinoatrial ring (SAR) of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. Conclusion: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.