The creep resistance of light metals is of utmost relevance for application at elevated temperatures. This includes automotive components in power trains, engines, battery casings and transmission housings. The alloy design of temperature resistant light alloys for these applications depends heavily on the timely determination of the creep behavior. However, specialized facilities and testing equipment are required to perform creep experiments, which are not available in all labs. In contrast, deformation dilatometers are state-of-the-art at most research facilities with a metal forming department. These instruments can apply a constant force at high temperatures and are therefore, in principle, able to conduct creep experiments. To validate the applicability of such a deformation dilatometer for the development of magnesium alloys, short time creep experiments were conducted and compared with results from a standardized creep stand. Good agreement between the dilatometer and conventional constant force creep experiments was found. In this work, both methods are described in detail and possible limitations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.