The Campoletis sonorensis ichnovirus (CsIV) vankyrin genes encode proteins containing truncated ankyrin repeat domains with sequence homology to the inhibitory domains of NF-kappaB transcription factor inhibitors, IkappaBs. The CsIV vankyrin proteins are thought to be involved in the suppression of NF-kappaB activity during immune response and/or developmental events in the parasitized host. Here we report that when P-vank-1 was expressed stably from Sf9 cells, prolonged survival of these cells was observed after baculovirus infection, UV irradiation, and treatment with the apoptosis-inducing chemical camptothecin compared to untransformed Sf9 cells. Furthermore, P-vank-1 inhibited nuclear and internucleosomal degradation and caspase activity after induction of apoptosis in Sf9 cells stably expressing P-vank-1. This is the first report of a polydnavirus protein with anti-apoptotic function.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex-type N-glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P-vank-1), which encodes an anti-apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High Five™ cells, and SfSWT-4 cells, which can produce glycoproteins with complex-type N-glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N-glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P-vank-1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT-4 cells were infected with a vankyrin-encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin-expressing cells were combined with a vankyrin-encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin-encoding baculovirus vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.