Within a composition range that is of interest for future alloy developments and at a possible application temperature of 700 °C, phase equilibria between Fe3Al and the Nb(Fe,Al)2 Laves phase have been determined. It was found that the solid solubility for Nb in Fe-Al increases by five times, when the Al content increases from about 25 to 35 at.% Al. Besides, the compositions of the co-existing phases, their lattice constants, Curie temperatures, transition temperatures and the solidus and liquidus temperatures of the Fe-Al-Nb alloys, some additionally doped with boron, have been determined.
It is known for Fe–Al–Ta alloys, that a homogeneous distribution of strengthening Laves phase precipitates in the matrix and aligned at the grain boundaries can be obtained when the formation of the stable Laves phase is preceded by the formation of the metastable Heusler phase. Several Fe–Al–Nb alloys with different Al and Nb contents and with or without boron doping are studied to elucidate whether comparable microstructures can be obtained in this system. It was found that the Heusler phase only occurs within a limited composition range. The time-dependent evolution of the microstructure shows that the transformation proceeds faster in Fe–Al–Nb alloys. Microhardness was measured in dependence on the microstructural evolution with increasing annealing time, and compressive yield stress was determined for alloys annealed 700 °C/1000 h to evaluate the influence of microstructure and composition.
Graphic Abstract
The touching of fibrillar surfaces elicits a broad range of affective reactions, which range from the adverse stinginess of a stiff bristle brush to the pleasant feel of velvet. To study the tactile perception of model fibrillar surfaces, a unique set of samples carrying dense, regular arrays of cylindrical microfibrils with high aspect ratio made from different elastomer materials have been created. Fibril length and material compliance are varied independently such that their respective influence on tactile perception can be elucidated. This work finds that the tactile perception of similarity between samples is dominated by bending of the fibrils under sliding touch. The results demonstrate that variations of material stiffness and of surface structure are not necessarily perceived independently by touch. In the case of fibrillar elastomer surfaces, it is rather the ratio of fibril length and storage modulus which determines fibril bending and becomes the dominant tactile dimension. Visual access to the sample during tactile exploration improves the tactile perception of fibril bendability. Experiments with colored samples show a distraction by color in participants’ decisions regarding tactile similarity only for yellow samples of outstanding brightness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.