Novel technologies allow to reuse or recycle water for on-site applications such as toilet flushing, showering, or hand washing at the household- or building-scale. Many of these technologies have now reached technology readiness levels that require for verification and validation testing in the field. Results from such field tests of decentralized water reuse systems have been published over the past few years, and observed performance is often compared to quality targets from water reuse frameworks (WRFs). An inspection of ten recent journal publications reveals that targets from WRFs are often misinterpreted, and the emphasis of these publications is too often on demonstrating successful aspects of the technologies rather than critically evaluating the quality of the produced water. We hypothesize that some of these misinterpretations are due to ambiguous definition of scopes of WRFs (e.g., “unrestricted urban reuse”) and unclear applicability for novel recycling systems that treat the water for applications that go beyond the reuse scopes defined in current WRFs. Additional challenges are linked to the verification of WRF quality targets in small-scale and decentralized systems under economic and organizational constraints. Current WRFs are not suitable for all possible reuse cases, and there is need for a critical discussion of quality targets and associated monitoring methods. As the scope of water reuse has expanded greatly over the past years, WRFs need to address new applications and advances in technology, including in monitoring capacities.
Highlights A greywater treatment system was monitored with automated flow cytometry and turbidity. Stagnation in biological activated carbon filter led to peaks in total cell concentration and turbidity. Strong correlation was observed between TCC and turbidity. Stagnation did not lead to increase of opportunistic pathogens in the biofilter's effluent.
Highly variable flow has to be expected in decentralized greywater treatment and can lead to intermittent operation of the treatment system. However, few studies have addressed the influence of variable flow on the treatment performance of a biological activated carbon filter (BAC). In this study, we investigated the influence of intermittent flow using small-scale BAC columns, which treat greywater as a second treatment step following a membrane bioreactor (MBR). Three operating strategies to respond to variable flow were evaluated. The activated carbon was characterized before and after the experiments in terms of biological activity and sorption capacity. The performance of the BAC filters was assessed based on total organic carbon (TOC) removal, TOC fractions and growth potential. No significant differences were observed between constant flow compared to on-off operation with intermittent flow over the range of tested influent concentrations. Peaks with high TOC during 24 h periods were attenuated by sorption and biological degradation. Adsorbed TOC was released after switching back to normal concentrations for influent concentrations more than 5 times higher than usually observed, the BAC functioned as a temporary sink. In line with these results, the high influent TOC values led to increased biological activity in the filter but did not influence the sorption capacity. The experiments showed that intermittent flow does not negatively impact the performance of a BAC and that there is no need for additional equalization tanks to buffer the variable flow, for example in household-scale greywater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.