Automatic analysis of students' collaborative interactions in physical settings is an emerging problem with a wide range of applications in education. However, this problem has been proven to be challenging due to the complex, interdependent and dynamic nature of student interactions in real-world contexts. In this paper, we propose a novel framework for the classification of student engagement in open-ended, face-to-face collaborative problem-solving (CPS) tasks purely from video data. Our framework i) estimates body pose from the recordings of student interactions; ii) combines face recognition with a Bayesian model to identify and track students with a high accuracy; and iii) classifies student engagement leveraging a Team Long Short-Term Memory (Team LSTM) neural network model. This novel approach allows the LSTMs to capture dependencies among individual students in their collaborative interactions. Our results show that the Team LSTM significantly improves the performance as compared to the baseline method that takes individual student trajectories into account independently. CCS CONCEPTS• Computing methodologies → Computer vision tasks; • Applied computing → Interactive learning environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.