Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.
The placenta is essential for the growth and development of mammalian embryos. For this reason, numerous genetic alterations and likely also environmental insults that disturb placenta development or function can cause early pregnancy loss in mice and humans. Nevertheless, simple in vitro assays to screen for potential effects on placenta formation are lacking. Here, we focus on modeling the first and critical step in placenta formation, which consists of the attachment of the allantois to the chorion. We describe a method to rapidly assess the attachment of allantoic explants on immobilized α4β1 integrin, which serves as a chorio-mimetic substrate.This in vitro approach enables a qualitative evaluation of the attachment and spreading behavior of multiple allantois explants at different consecutive time points. The protocol may be used to investigate the effect of targeted mouse mutations, drugs, or various environmental factors that have been linked to pregnancy complications or fetal loss on allantois attachment ex vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.