When aggregating financial risk on a portfolio level, the specification of the dependence structure between the risk factors plays an important role. Promising parametric models are often based on a so-called copula approach. Case studies of market crashes suggest the application of concepts allowing for extremal dependence. We present a transformed copula as a new model that both fits the data and allows for exact prediction in the tails. It turns out that the new model improves benchmark models like the t- or Clayton copula with respect to risk measures like VaR or Expected Shortfall. By performing different goodness-of-fit tests, the quality of the estimation is examined. Copyright 2005 Royal Economic Society
SUMMARYIn this paper, we are concerned with bivariate di erentiable models for joint extremes for dependent data sets. This question is often raised in hydrology and economics when the risk driven by two (or more) factors has to be quantiÿed. Here we give a full characterization of polynomial models by means of their dependence function and dependence measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.