Transfer of light-grown autotrophic Euglena gracilis cells to darkness and carbon (glucose) containing heterotrophic media causes structural and functional decomposition of the photosynthetic apparatus. The process can be ascribed to a strict diluting-out mechanism of stroma constituents among the progeny, as shown for ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), and aminoacyl-tRNA synthetases (Aa-RS; especially Leu-RS, EC 6.1.1.4) activities. The diluting-out effect of thylakoid membranes and chlorophyll seems to be superimposed by additional degradations, beginning soon after the transfer of cells to darkness. Cultivation of cells in darkness in 0.03 M KCl or without utilizable organic carbon (resting media) preserves chloroplast structure and function over a long period, indicating negligible turnover in these cells. Thus, under both growing and resting conditions, darkness induces the arrest of synthesis of plastid constituents. Experiments with the inhibitors cycloheximide, chloramphenicol, and nalidixic acid demonstrate that chloroplast dedifferentiation does not require organelle gene expression, but it is more strictly dependent on biosynthetic events in the nucleo-cytoplasmic compartment than the reverse process, light-induced chloroplast formation. Since cycloheximide at low concentrations in growth medium causes a marked suppression of precursor uptake or re-utilization similar to that in cells of resting media, intracellular precursor deficiency is suggested to control the observed blockade in cytoplasmic synthesis of plastid proteins. On the other hand, darkness might signalize the stop of gene expression in the organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.