1 The present study attempted to determine whether noradrenaline (NA) NA release were investigated. 3 In rabbit hippocampus, 5-HT, 5-carboxamidotryptamine (5-CT; 32 pM) and 2-CH3-5-HT (32 pM) increased [3H]-NA release elicited with 360 pulses/3 Hz. Facilitation of transmitter release was not influenced by the 5-HT3 receptor antagonist, tropisetron but was prevented by the a2-adrenoceptor antagonist, rauwolscine. When autoinhibition was avoided by stimulating the tissue with 4 pulses/100 Hz (pseudo-one pulse-(POP) stimulation), 2-CH3-5-HT decreased evoked transmitter release, whereas 5-HT and 5-CT had no effect. Inhibition caused by 2-CH3-5-HT was not affected by tropisetron but counteracted by the x2-adrenoceptor ligands, clonidine and rauwolscine. Inhibition caused by clonidine was diminished in the presence of 5-CT or 2-CH3-5-HT.4 In human neocortex, [3H]-NA release elicited with 360 pulses/3 Hz was increased by 10 pM 5-HT and 32 pM 5-CT, whereas 2-CH3-5-HT was ineffective.[31H]-NA release evoked with a modified POP stimulation (2 bursts of 4 pulses/100 Hz, 3.5 min apart) was not affected by 2-CH3-5-HT or 5-CT. 5 The present results indicate that 5-HT, 2-CH3-5-HT and 5-CT can act on presynaptic a2-autoreceptors as partial agonists (2-CH3-5-HT; in rabbit hippocampal tissue) or antagonists (5-HT and 5-CT; in tissue of rabbit hippocampus and human neocortex). Furthermore the existence of autoinhibition dictates whether these drugs cause facilitation of release, inhibition or have no effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.