Phthalates have been used extensively as plasticizers to improve the flexibility of polymers, and they also have found many industrial applications. They are ubiquitous in the environment and have been detected in a variety of environmental and biological matrices. The goal of this study was to develop a method for the determination of 17 phthalate esters in house dust. This method involved sonication extraction, sample cleanup using solid phase extraction, and isotope dilution GC/MS/MS analysis. Method detection limits (MDLs) and recoveries ranged from 0.04 to 2.93 μg/g and from 84 to 117%, respectively. The method was applied to the analysis of phthalates in 38 paired household vacuum samples (HD) and fresh dust (FD) samples. HD and FD samples compared well for the majority of phthalates detected in house dust. Data obtained from 126 household dust samples confirmed the historical widespread use of bis(2-ethylhexyl) phthalate (DEHP), with a concentration range of 36 μg/g to 3840 μg/g. Dibutyl phthalate (DBP), benzyl butyl phthalate (BzBP), diisononyl phthalate (DINP), and diisodecyl phthalate (DIDP) were also found in most samples at relatively high concentrations. Another important phthalate, diisobutyl phthalate (DIBP), was detected at a frequency of 98.4% with concentrations ranging from below its MDL of 0.51 μg/g to 69 μg/g.
Population biomonitoring data sets such as the Canadian Health Measures Survey (CHMS) and the United States National Health and Nutrition Examination Survey (NHANES) collect and analyze spot urine samples for analysis for biomarkers of exposure to non-persistent chemicals. Estimation of population intakes using such data sets in a risk-assessment context requires consideration of intra- and inter-individual variability to understand the relationship between variation in the biomarker concentrations and variation in the underlying daily and longer-term intakes. Two intensive data sets with a total of 16 individuals with collection and measurement of serial urine voids over multiple days were used to examine these relationships using methyl paraben, triclosan, bisphenol A (BPA), monoethyl phthalate (MEP), and mono-2-ethylhexyl hydroxyl phthalate (MEHHP) as example compounds. Composited 24 h voids were constructed mathematically from the individual collected voids, and concentrations for each 24 h period and average multiday concentrations were calculated for each individual in the data sets. Geometric mean and 95th percentiles were compared to assess the relationship between distributions in spot sample concentrations and the 24 h and multiday collection averages. In these data sets, spot sample concentrations at the 95th percentile were similar to or slightly higher than the 95th percentile of the distribution of all 24 h composite void concentrations, but tended to overestimate the maximum of the multiday concentration averages for most analytes (usually by less than a factor of 2). These observations can assist in the interpretation of population distributions of spot samples for frequently detected analytes with relatively short elimination half-lives.
The development and application of fate and exposure modeling has undergone fundamental changes over the last 20 years. This has, in part, been driven by different needs within the regulatory community to address chemicals of concern using different approaches. Here we present a retrospective look at fate and exposure model application over the last two decades keeping an international regulatory perspective and using the Government of Canada's Chemicals Management Plan to illustrate concepts. We discuss the important role fate and exposure modeling has played to help address key data gaps when evaluating the risk of chemicals for both human health and ecological reasons. Yet limitations for more widespread model application within a regulatory context remain. Consequently, we identify specific data gaps and regulatory needs with an eye towards new directions for 21 century chemical evaluation. We suggest that one factor limiting greater model application is the need for increased awareness and agreement of what chemical exposure assessment encompasses within the risk assessment paradigm. This is of particular importance today because of the increased availability of computational and high-throughput data and methods for chemical assessment allowing evaluators to potentially examine exposure from site of release to site of toxic action, thus linking exposure with toxicology. We further suggest there is a need for discussion at a global level to promote the awareness of new tools and approaches available for fate and exposure modeling and suggest that this could be organized using the aggregate exposure pathways concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.