Centrosome abnormalities are observed in human cancers and have been associated with aneuploidy, a driving force in tumour progression. However, the exact pathways that tend to cause centrosome abnormalities have not been fully elucidated in human tumours. Using a series of 68 non-small-cell lung carcinomas and an array of in vitro experiments, the relationship between centrosome abnormalities, aneuploidy, and the status of key G1 to S-phase transition cell-cycle molecules, involved in the regulation of centrosome duplication, was investigated. Centrosome amplification and structural abnormalities were common (53%), were strongly related to aneuploidy, and, surprisingly, were even seen in adjacent hyperplastic regions, suggesting the possibility that these are early lesions in lung carcinogenesis. Cyclin E and E2F1 overexpression, but not p53 mutation, was observed to correlate with centrosome abnormalities in vivo (p = 0.029 and p = 0.015, respectively). This was further strengthened by the observation that cyclin E was specifically present in the nucleus and/or cytoplasm of the cells that contained centrosome aberrations. The cytoplasmic cyclin E signal may be attributed, in part, to the presence of truncated low-molecular-weight isoforms of cyclin E. In order to isolate the effect of cyclin E on the appearance of centrosome abnormalities, a U2OS tetracycline-repressible cyclin E cell line that has a normal centrosome profile by default was used. With this system, it was confirmed in vitro that persistent cyclin E overexpression is sufficient to cause the appearance of centrosome abnormalities.
The observed alterations of their expression suggest a role of Dsg3 and γ-catenin (additionally to E-cadherin/β-catenin) as biomarkers of malignant transformation risk of oral dysplasia and the biological behavior (aggressiveness) of oral cancer, respectively.
Prothymosin α (ProTα) is a nuclear polypeptide of great biological and, possibly clinical, importance, because its expression levels have been associated with early diagnosis/prognosis of human cancer. It is therefore interesting to raise easily available and cost-effective antibodies that would be applied to develop reliable ProTα immunodiagnostics. In this study, New Zealand white rabbits and laying hens were parallel immunized against intact ProTα or the synthetic fragments ProTα[1-28], ProTα[87-109], and ProTα[101-109], all conjugated to keyhole limpet hemocyanin (KLH). The corresponding antibodies G and Y were immunochemically evaluated in parallel with ELISA and Western blot systems and applied to fluorescence immunocytology experiments using various cancer cell lines and normal cells. The antibody G raised against ProTα[101-109]/KLH had excellent functional characteristics in the Western blot and immunocytology experiments, where the fluorescent signal was almost exclusively shown in the cell nucleus independently of the cells assayed. The above antibody has been applied to preliminary IHC staining of human cancer prostate tissues, leading to a high percentage of clearly and intensively stained nuclei in the adenocarcinoma tissue; this antibody can be further used in cancer tissue immunostaining and in research concerning the role of ProTa in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.