In postmenopausal women, E2+DRSP administration improves vasomotor symptoms and general aspects of quality of life and may positively influence cardiovascular risk factors.
The purpose of this study was to examine the potential effect of Chios Mastic Gum (CMG) consumption on bone mineral density (BMD) and strength of ovariectomized rats. CMG is a known resin used from ancient times for its beneficial biological properties. Thirty mature female Wistar rats were randomized into three equal groups: sham-operated (control), ovariectomized (OVX), and ovariectomized and administered CMG per os (OVX+CMG). BMD of the total tibia, proximal tibia, and the 6th lumbar vertebra were measured at baseline and at 3 and 6 months post ovariectomy. Bone strength was assessed with three-point-bending (3pb) of the right femur. At 3 and 6 months, BMD values of the OVX+ CMG group were significantly higher for the anatomical cites evaluated than those of the OVX group. Femoral thickness assessed via 3pb had intermediate values in the treated group compared to the other groups. Cytology of vaginal smears and uterine weight of the OVX+CMG group were consistent with estrogen depletion. Gastrocnemius muscle and intraperitoneal fat ratios to body weight (BW) of the OVX+CMG group did not significantly differ from the control group. Daily consumption CMG had a protective effect on BMD of the total and proximal tibia and the 6th lumbar vertebra of the rats, without causing undesirable effects on the vaginal epithelium and uterus. The 3pb results also demonstrated a favorable effect on the thickness of rat femurs. In addition, CMG was beneficial for both the muscular system and the intraperitoneal fat/BW ratio of the rats.
Aim: This study aimed to investigate the effect of Ceratonia siliqua on bone mineral density (BMD) as a nonpharmaceutical alternative treatment for postmenopausal osteoporosis. Materials and Methods: Thirty mature female Wistar rats were randomly separated into three groups of 10: Control, ovariectomized (OVX), and ovariectomized-plus-C. siliqua (OVX+CS). Total and proximal BMD were measured by dual-energy X-ray absorptiometry (DEXA) in all groups before ovariectomy, and at 3 and 6 months postoperatively.At the end of the study, the femurs were subjected to a threepoint bending test. Results: DEXA revealed no statistically significant difference in absolute values or percentage changes for total tibial BMD between OVX+CS and OVX groups throughout the study. In the proximal tibia, both absolute values and BMD percentage changes from baseline were higher in the OVX+CS group compared to the OVX group after 3 and 6 months of C. siliqua administration. Three-point bending test revealed a significantly higher thickness index in the OVX+CS group compared to the OVX group and a higher cross-sectional area index compared to the control group. Conclusion: Long-term administration of C. siliqua may be considered a non-pharmaceutical alternative treatment for postmenopausal osteoporosis. Further research is required to properly investigate the effects, and suitable treatment dose and schedule.Osteoporosis is a multifactorial skeletal disorder that is a public health concern and a heavy economic burden (1-3). After 35-40 years of age, osteoclasts are more active than osteoblasts. As a result, bone mass is lost, which occurs faster in postmenopausal women depending on lifestyle, diet, and other factors, because of their decreasing sex hormones 270
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.