The stability of Nafion–carbon composites is important for the efficient functioning of fuel cells. The thermal decomposition of Nafion, nanostructured carbon materials, such as multi-walled carbon nanotubes, graphene-like materials, and their composites, have been studied using constant heating rate thermogravimetry in air. Materials were characterized by quantitative and qualitative analysis methods, such as thermogravimetry, X-ray photoelectron spectroscopy, scanning, and transmission electron microscopy with field emission. In Nafion–carbon composites, an increase in the thermal stability of the Nafion polymer is observed due to the formation of surface compounds at the Nafion–carbon interface. In this case, the degree of stabilization is affected by both the component composition of the composite and the structure of the nanocarbon material. The greatest effect was obtained in the case of using thermally expanded graphite (few-layer graphene). Nafion is distributed to a greater extent over the surface of the carbon material due to its high structural accessibility. The most thermally stable composite is Nafion–graphene in a mass ratio of components 1:4 with one stage Nafion degradation at 422 °C, whereas the degradation of pristine Nafion occurs in three stages at 341, 413, and 430 °C. The dependences of thermal stability and features of thermal degradation on the composition and structure of composites are discussed.
A technology for obtaining graphene by means of ultrasonic dispersion of thermally expanded graphite in the presence of a surface-active polymer Nafion is presented. The technology makes it possible to obtain large amounts of low-layer (1-3 layers) graphene in a relatively short time. An approach to control the dispersion process based on UV spectroscopy of dispersions is described. A mechanism is proposed for the effect of a surface-active polymer on the production of low-layer graphene by ultrasonic dispersion. Keywords: graphene, ultrasonic dispersion, thermally expanded graphite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.