In this paper, we present an implementation of quantum transfer learning to blind and passive detection of image splicing forgeries. Though deep learning models are becoming increasingly popular for various computer vision use cases, they depend on powerful classical machines and GPUs for dealing with complex problem solving and also to reduce the time taken for computation. The quantum computing research community has demonstrated elegant solutions to complex use cases in deep learning and computer vision for reducing storage space and increasing the accuracy of results compared to those obtained on a classical computer. We extend the quantum transfer learning approach formerly applied to image classification, for solving the growing problem of image manipulation, specifically, image splicing detection. A hybrid model is built using the ResNet50 pre-trained classical deep learning network and a quantum variational circuit to classify spliced versus authentic images. We present a comparative empirical study of classical versus quantum transfer learning approach using Xanadu’s pennylane quantum simulator and the pytorch deep learning framework. The model was also evaluated on the actual quantum processor ibmqx2 provided by IBM. Results obtained by execution on the quantum processor ([Formula: see text]%, [Formula: see text]%) and simulator ([Formula: see text]%, [Formula: see text]%) showed improvements in comparison to those obtained from classical computers ([Formula: see text]%, [Formula: see text]%).
In this paper we propose a novel socio-inspired convolutional neural network (CNN) deep learning model for image splicing detection. Based on the premise that learning from the detection of coarsely spliced image regions can improve the detection of visually imperceptible finely spliced image forgeries, the proposed model referred to as, MissMarple, is a twin CNN network involving feature-transfer learning. Results obtained from training and testing the proposed model using the benchmark datasets like Columbia splicing, WildWeb, DSO1 and a proposed dataset titled AbhAS consisting of realistic splicing forgeries revealed improvement in detection accuracy over the existing deep learning models.
209 participants between the age group of 18-34 years were surveyed online. <p>The questionnaire was divided into three sections. The first section collected demographic information regarding their gender, age and educational qualification. The second section gathered information regarding their knowledge about digital image forgery (DIF) and their current privacy settings of their Facebook account. Participants were asked to respond to questions more specifically about profile picture uploads, album creation and tagging facilities provided by Facebook. The third section introduced the participants to a DIF scenario.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.