The oxidative transformation product of a common tire preservative, identified as N-(1,3-dimethylbutyl)-N′-phenyl-pphenylenediamine quinone (6-PPDQ), has recently been found to contribute to "urban runoff mortality syndrome" in Coho salmon at nanogram per liter levels. Given the number of fish-bearing streams with multiple stormwater inputs, large-scale campaigns to identify 6-PPDQ sources and evaluate mitigation strategies will require sensitive, high-throughput analytical methods. We report the development and optimization of a direct sampling tandem mass spectrometry method for semiquantitative 6-PPDQ determinations using a thin polydimethylsiloxane membrane immersion probe. The method requires no sample cleanup steps or chromatographic separations, even in complex, heterogeneous samples. Quantitation is achieved by the method of standard additions, with a detection limit of 8 ng/L and a duty cycle of 15 min/sample. High-throughput screening provides semiquantitative concentrations with similar sensitivity and a full analytical duty cycle of 2.5 min/sample. Preliminary data and performance metrics are reported for 6-PPDQ present in representative environmental and stormwater samples. The method is readily adapted for realtime process monitoring, demonstrated by following the dissolution of 6-PPDQ from tire fragments and subsequent removal in response to added sorbents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.