Activating mutations of estrogen receptor α gene (ESR1) in breast cancer can cause endocrine resistance of metastatic tumor cells. The skeleton belongs to the metastatic sides frequently affected by breast cancer. The prevalence of ESR1 mutation in bone metastasis and the corresponding phenotype are not known. In this study bone metastases from breast cancer (n=231) were analyzed for ESR1 mutation. In 27 patients (12%) (median age 73 years, range: 55-82 years) activating mutations of ESR1 were detected. The most frequent mutation was p.D538G (53%), no mutations in exon 4 (K303) or 7 (S463) were found. Lobular breast cancer was present in 52% of mutated cases (n=14) and in 49% of all samples (n=231), respectively. Mutated cancers constantly displayed strong estrogen receptor expression. Progesterone receptor was positive in 78% of the mutated cases (n=21). From 194 estrogen receptor-positive samples, 14% had ESR1 mutated. Except for one mutated case, no concurrent HER2 overexpression was noted. Metastatic breast cancer with activating mutations of ESR1 had a higher Ki67 labeling index than primary luminal cancers (median 30%, ranging from 5 to 60% with 85% of cases revealing ≥20% Ki67-positive cells). From those patients from whom information on endocrine therapy was available (n=7), two had received tamoxifen only, 4 tamoxifen followed by aromatase inhibitors and one patient had been treated with aromatase inhibitors only. We conclude that ESR1 mutation is associated with estrogen receptor expression and high proliferative activity and affects about 14% of estrogen receptor-positive bone metastases from breast cancer.
Metaplastic breast carcinoma comprises a heterogeneous group of tumours with poorly understood pathogenesis. A subset of metaplastic breast cancers show myoepithelial differentiation and constitute a morphological spectrum with ill-defined borders from fibromatosis-like spindle cell carcinoma to myoepithelial carcinoma. In a series of 34 metaplastic breast cancers with spindle cell and myoepithelial differentiation, we found recurrent genetic aberrations, which set them apart from other metaplastic breast cancers and suggest a unique pathogenesis. The majority of cases (28 of 34 patients; 82.4%) showed distinct chromosomal loss in the 9p21.3 region, including CDKN2A and CDKN2B. Biallelic loss of the CDKN2A/B region was found in 50% of deleted cases. Expression of the cyclin-dependent kinase inhibitor CDKN2A (p16) was missing in all samples affected by 9p21.3 loss. Other genomic alterations frequently occurring in triple-negative and metaplastic breast cancer were absent or found in only a minority of cases. Gains of whole chromosome 5 and chromosomal region 5p were observed in nine cases, and were associated with recurrences (p < 0.001). In 64.3% of cases, 9p21.3 loss was accompanied by concurrent PIK3CA mutation. Both genomic abnormalities were also detectable in adenomyoepitheliomas (4/12), which are considered to represent the precursor lesion of myoepithelial metaplastic breast cancer. In adenomyoepithelioma, PIK3CA mutation was present in both luminal epithelial and myoepithelial cells, whereas p16 loss was found only in the latter. We conclude that 9p21.3 (CDKN2A) loss and PIK3CA mutation characterize a subgroup of metaplastic breast cancers with myoepithelial and spindle cell differentiation. Myoepithelial cells in adenomyoepithelioma may show identical aberrations. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
In addition to amplification, point mutations of the human epidermal growth factor receptor 2 (HER2) gene (ERBB2) have been shown to activate the corresponding signaling pathway in breast cancer. The prevalence of ERBB2/HER2 mutation in bone metastasis of breast cancer and the associated phenotype are not known. In this study, bone metastases from breast cancer patients (n = 231) were analyzed for ERBB2/HER2 mutation. In 7 patients (3%; median age 70 years, range 50-83 years), gain-of-function mutations of ERBB2/HER2 were detected. The most frequent mutation was p.L755S (71%). In 29% of mutated cases, p.V777L was found. Lobular breast cancer was present in 71% of mutated cases (n = 5) and in 49% of all samples (n = 231; p = 0.275). Mutation frequency was 4.4% in the lobular subgroup and 17.4% in the pleomorphic subtype of lobular cancer (n = 23), respectively. All but one mutated lobular cancers were of the pleomorphic subtype (p = 0.006). Mutated cancers belonged either to the luminal (n = 4) or to the triple-negative types (n = 3). With regard to protein expression and gene amplification, HER2 was negative in all mutated cases. Among the 14% of metastatic luminal cancers with estrogen receptor gene (ESR1) mutation, conveying resistance against aromatase inhibitors, no concomitant ERBB2/HER2 mutation occurred. We conclude that activating HER2 mutation is present in about 3% of bone metastases from breast cancers, with significantly higher rates in the pleomorphic subtype of lobular cancer. Since mutated cases appear to be HER2-negative by conventional testing, the opportunity for specific anti-HER2 therapy may be missed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.