The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5 cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5 cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5 chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.
Chemo-resistance is one of the major causes of cancer-related deaths. Here we used single-cell transcriptomics to investigate divergent modes of chemo-resistance in tumor cells. We observed that higher degree of phenotypic intra-tumor heterogeneity (ITH) favors selection of pre-existing drug-resistant cells, whereas phenotypically homogeneous cells engage covert epigenetic mechanisms to trans-differentiate under drug-selection. This adaptation was driven by selection-induced gain of H3K27ac marks on bivalently poised resistance-associated chromatin, and therefore not expressed in the treatment-naïve setting. Mechanistic interrogation of this phenomenon revealed that drug-induced adaptation was acquired upon the loss of stem factor SOX2, and a concomitant gain of SOX9. Strikingly we observed an enrichment of SOX9 at drug-induced H3K27ac sites, suggesting that tumor evolution could be driven by stem cell-switch-mediated epigenetic plasticity. Importantly, JQ1 mediated inhibition of BRD4 could reverse drug-induced adaptation. These results provide mechanistic insights into the modes of therapy-induced cellular plasticity and underscore the use of epigenetic inhibitors in targeting tumor evolution.
Signaling between cancer and nonmalignant (stromal) cells in the tumor microenvironment (TME) is a key to tumor progression. Here, we deconvoluted bulk tumor transcriptomes to infer cross-talk between ligands and receptors on cancer and stromal cells in the TME of 20 solid tumor types. This approach recovered known transcriptional hallmarks of cancer and stromal cells and was concordant with single-cell, in situ hybridization and IHC data. Inferred autocrine cancer cell interactions varied between tissues but often converged on Ephrin, BMP, and FGFR-signaling pathways. Analysis of immune checkpoints nominated interactions with high levels of cancer-to-immune cross-talk across distinct tumor types. Strikingly, PD-L1 was found to be highly expressed in stromal rather than cancer cells. Overall, our study presents a new resource for hypothesis generation and exploration of cross-talk in the TME.
Significance:
This study provides deconvoluted bulk tumor transcriptomes across multiple cancer types to infer cross-talk in the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.