Antibiotic resistance is an imminent threat to the effective treatment of bacterial infections, and alternative antibiotic strategies are urgently required. The golden epoch of antibiotics is coming to an end, and the development of new therapeutic agents to combat bacterial infections should be prioritized. This article will review the potential of antimicrobial peptides (AMPs) to combat the threat of antimicrobial resistance. The modern-day antimicrobial resistance dilemma is briefly discussed followed by a review of the potential of AMPs to be used alone or in combination with current antibiotics in order to enhance antibacterial properties of antibiotics while also potentially combatting resistance. This article reiterates that many AMPs exhibit direct microbial killing activity and also play an integral role in the innate immune system. These properties make AMPs attractive alternative antimicrobial agents. Furthermore, AMPs are promising candidates to be used as adjuvants in combination with current antibiotics in order to combat antibiotic resistance. Combinations of AMPs and antibiotics are less likely to develop resistance or transmit cross-resistance. The further identification and therapeutic development of AMPs and antibiotic-AMP combinations are strongly recommended.
Abstract:Recently, research into the development of new antimicrobial agents has been driven by the increase in resistance to traditional antibiotics and Emerging Infectious Diseases. Antimicrobial peptides (AMPs) are promising candidates as alternatives to current antibiotics in the treatment and prevention of microbial infections. AMPs are produced by all known living species, displaying direct antimicrobial killing activity and playing an important role in innate immunity. To date, more than 2000 AMPs have been discovered and many of these exhibit broad-spectrum antibacterial, antiviral and anti-parasitic activity. Neglected tropical diseases (NTDs) are caused by a variety of pathogens and are particularly wide-spread in low-income and developing regions of the world. Alternative, cost effective treatments are desperately needed to effectively battle these medically diverse diseases. AMPs have been shown to be effective against a variety of NTDs, including African trypanosomes, leishmaniosis and Chagas disease, trachoma and leprosy. In this review, the potential of selected AMPs to successfully treat a variety of NTD infections will be critically evaluated.
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/ apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.