Ecotoxicological effects of nanoparticles (NP) are still poorly documented while their commercialization for industrial and household applications increases. The aim of this study was to evaluate the influence of physicochemical characteristics on metal oxide NP and carbon nanotubes toxicological effects toward bacteria. Two strains of bacteria, Cupriavidus metallidurans CH34 and Escherichia coli MG1655 were exposed to TiO(2) or Al(2)O(3) NP or to multiwalled-carbon nanotubes (MWCNT). Particular attention was paid on optimizing NP dispersion to obtain nonagglomerated suspensions. Our results show that NP toxicity depends on their chemical composition, size, surface charge, and shape but not on their crystalline phase. MWCNT toxicity does not depend on their purity. Toxicity also depends on the bacterial strain: E. coli MG1655 is sensitive to NP, whereas C. metallidurans CH34 is not. Interestingly, NP are accumulated in both bacterial strains, and association between NP and bacteria is necessary for bacterial death to occur. NP may then represent a danger for the environment, causing the disappearance of some sensitive bacterial strains such as E. coli MG1655, but also being mobilized by nonsensitive strains such as C. metallidurans CH34 and transported through the whole ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.