Abstract.A qualitative study is performed on plasma transport modelling in the inner magnetosphere, revealing the significance of a model use choice and its parameterization. First, we examine particle transport using comparative analysis of both magnetic and electric field models. This work reveals that the electric field plays an important role in understanding particle dynamics and the models lead to various results in terms of plasma source, energy and particle trajectory. We then concentrate particularly on proton loss assessment considering the charge exchange phenomenon. For that, models are needed to provide a neutral hydrogen density estimation. So, exospheric models were tested in light of the Dynamics Explorer 1 measurements analysed by Rairden.
<p>Precipitations of auroral electrons characterize the relationship of the magnetosphere and the upper atmosphere, therefore state of near-Earth space depending on their localization and their intensity. One of the main gaps in both data and modelling is the monitoring of the precipitation of low-energy (0.02 &#8211; 35 keV) particles in the ionosphere. These particles are responsible of the surface charging on satellites, which lead to trigger electrostatic discharge (ESD) on components. This impact is the most recurrent in space and need to better understand. The method present here, allows an alternative to particle detectors that do not have access to this area.</p><p>From optical data, it can be very interesting to reconstruct low energy electron flux in the aurora region. Therefore, the interpretation of the auroral intensities is made using the Transsolo code, a kinetic code which use as input the electron flux and the solar EUV flux on the dayside. It calculates the transport of the suprathermal electrons along a line of sight or a vertical and the subsequent auroral emissions. A optimization method is worked to trying to retrieve electron flux from optical measurements.</p><p>The study present here is based on ALIS network data which provides very useful data (Brandstorm, 2003). Tomographic data of the volume emission rate are built from ALIS measurements (Gustavsson, 2000). From tomographic data and transsolo simulations, we adapt the optimization method to reconstruct energetic particles flux. We focus on measurements of the event of 05 March 2008 at 18:41:30 UT and 18:42:40 UT acquired by 5 stations and centred above Skibotn city. Results are presented in the form of maps of mean energy and total energy (corresponding to the energy flux) depending on geographic coordinates.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.