Appropriate asphalt binder selection is dependent on the correct determination of maximum and minimum pavement temperatures. Temperature prediction models have been developed to determine pavement design temperatures. Accordingly, accurate temperature prediction is necessary to ensure the correct design of climate-resilient pavements and for suitable pavement overlay design. Research has shown that the complexity of the model, input variables, geographical location among others affect the accuracy of temperature prediction models. Calibration has also proved to improve the accuracy of the predicted temperature. In this paper, the performance of three pavement temperature prediction models with a sample of materials, including asphalt, was examined. Furthermore, the effect of calibration on model accuracy was evaluated. Temperature data sourced from Pretoria were used to calibrate and test the models. The performance of both the calibrated and uncalibrated models in a different geographical location was also assessed. Asphalt temperature data from two locations in Ghana were used. The determination coefficient (R2), Variance Accounted For (VAF), Maximum Relative Error (MRE) and Root Mean Square Error (RMSE) statistical methods were used in the analysis. It was observed that the models performed better at predicting maximum temperature, while minimum temperature predictions were highly variable. The performance of the models varied for the maximum temperature prediction depending on the material. Calibration improved the accuracy of the models, but test data relevant to each location ought to be used for calibration to be effective. There is also a need for the models to be tested with data sourced from other continents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.