We give a "generalized' version of the isoperimetric inequality when the perimeter is defined with respect to a convex, positively homogeneous function on W". We use it to prove that, for any function u compactly supported in R", the integral of a convex function of DU decreases when u is rearranged in the corresponding "convex" way. Similar arguments allow us, for example, to prove comparison results for solutions of the Dirichlet problem for elliptic equations when the differential operator satisfies suitable structure assumptions. R~~SUMI? -Nous donnons une version (< generalisee >) de l'inegalite isoperimetrique lorsque la definition du perimetre depend d'une fonction convexe et positivement homogene sur W". Cette inegalite est employee pour demontrer que, pour toutes les fonctions u avec support compact dans R", l'integrale d'une fonction convexe de DU decro'it quand u est rearrangee a une faGon << convexe B. Avec des arguments du m&me type nous demontrons, par exemple, les resultats de comparaison pour les solutions du probleme de Dirichlet pour des equations elliptiques quand l'operateur differentiel satisfait des hypotheses de structure convenables.Work partially supported by MURST (40%)
L'accès aux archives de la revue « Annales de l'I. H. P., section C » (http://www.elsevier.com/locate/anihpc) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/
We solve a class of isoperimetric problems on R 2 + := (x, y) ∈ R 2 : y > 0 with respect to monomial weights. Let α and β be real numbers such that 0 ≤ α < β +1, β ≤ 2α. We show that, among all smooth sets Ω in R 2 + with fixed weighted measure Ω y β dxdy, the weighted perimeter ∂Ω y α ds achieves its minimum for a smooth set which is symmetric w.r.t. to the y-axis, and is explicitly given. Our results also imply an estimate of a weighted Cheeger constant and a lower bound for the first eigenvalue of a class of nonlinear problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.