Photovoltaic (PV) conversion of solar energy starts to give an appreciable contribution to power generation in many countries, with more than 90% of the global PV market relying on solar cells based on crystalline silicon (c-Si). The current efficiency record of c-Si solar cells is 26.7%, against an intrinsic limit of~29%. Current research and production trends aim at increasing the efficiency, and reducing the cost, of industrial modules. In this paper, we review the main concepts and theoretical approaches that allow calculating the efficiency limits of c-Si solar cells as a function of silicon thickness. For a given material quality, the optimal thickness is determined by a trade-off between the competing needs of high optical absorption (requiring a thicker absorbing layer) and of efficient carrier collection (best achieved by a thin silicon layer). The efficiency limits can be calculated by solving the transport equations in the assumption of optimal (Lambertian) light trapping, which can be achieved by inserting proper photonic structures in the solar cell architecture. The effects of extrinsic (bulk and surface) recombinations on the conversion efficiency are discussed. We also show how the main conclusions and trends can be described using relatively simple analytic models. Prospects for overcoming the 29% limit by means of silicon/perovskite tandems are briefly discussed.
We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.
The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.
We theoretically investigate light trapping with disordered 1D photonic structures in thin‐film crystalline silicon solar cells. The disorder is modelled in a finite‐size supercell, which allows the use of rigorous coupled‐wave analysis to calculate the optical properties of the devices and the short‐circuit current density Jsc. The role of the Fourier transform of the photonic pattern in the light trapping is investigated, and the optimal correlation between size and position disorder is found. This result is used to optimize the disorder in a more effective way, using a single parameter. We find that a Gaussian disorder always enhances the device performance with respect to the best ordered configuration. To properly quantify this improvement, we calculate the Lambertian limit to the absorption enhancement for 1D photonic structures in crystalline silicon, following the previous work for the 2D case [M.A. Green, Progr. Photovolt: Res. Appl. 2002; 10(4), pp. 235–241]. We find that disorder optimization can give a relevant contribution to approach this limit. Finally, we propose an optimal disordered 2D configuration and estimate the maximum short‐circuit current that can be achieved, potentially leading to efficiencies that are comparable with the values of other thin‐film solar cell technologies. Copyright © 2013 John Wiley & Sons, Ltd.
We present a theoretical optimisation of 1D apodized grating couplers in a "pure" Silicon-On-Insulator (SOI) architecture, i.e. without any bottom reflector element, by means of a general mutative method. We perform a comprehensive 2D Finite Difference Time Domain study of chirped and apodized grating couplers in 220 nm SOI, and demonstrate that the global maximum coupling efficiency in that platform is capped to 65% (-1.9 dB). Moving to designs with thicker Si-layers, we identify a new record design in 340 nm SOI, with a simulated coupling efficiency of 89% (-0.5 dB). Going to thicker Si layers does not further improve the efficiency, implying that -0.5 dB may be a global maximum for a grating coupler in SOI without a bottom-reflector. Even after allowing for 193 nm UV-lithographic fabrication constraints, the 340 nm design still offers -0.7 dB efficiency. These new apodized designs are the first pure SOI couplers compatible with deep-UV lithography to offer better than -1 dB insertion losses. With only very minor changes to existing deposition and lithography recipes, they are compatible with the multi-project wafer runs already offered by Si-Photonics foundries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.