The great demographic change leading to an ageing society demands technological solutions to satisfy the increasing varied elderly needs. This paper presents PHAROS, an interactive robot system that recommends and monitors physical exercises designed for the elderly. The aim of PHAROS is to be a friendly elderly companion that periodically suggests personalised physical activities, promoting healthy living and active ageing. Here, it is presented the PHAROS architecture, components and experimental results. The architecture has three main strands: a Pepper robot, that interacts with the users and records their exercises performance; the Human Exercise Recognition, that uses the Pepper recorded information to classify the exercise performed using Deep Leaning methods; and the Recommender, a smart-decision maker that schedules periodically personalised physical exercises in the users’ agenda. The experimental results show a high accuracy in terms of detecting and classifying the physical exercises (97.35%) done by 7 persons. Furthermore, we have implemented a novel procedure of rating exercises on the recommendation algorithm. It closely follows the users’ health status (poor performance may reveal health problems) and adapts the suggestions to it. The history may be used to access the physical condition of the user, revealing underlying problems that may be impossible to see otherwise.
There are great physical and cognitive benefits for older adults who are engaged in active aging, a process that should involve daily exercise. In our previous work on the PHysical Assistant RObot System (PHAROS), we developed a system that proposed and monitored physical activities. The system used a social robot to analyse, by means of computer vision, the exercise a person was doing. Then, a recommender system analysed the exercise performed and indicated what exercise to perform next. However, the system needed certain improvements. On the one hand, the vision system captured the movement of the person and indicated whether the exercise had been done correctly or not. On the other hand, the recommender system was based purely on a ranking system that did not take into account temporal evolution and preferences. In this work, we propose an evolution of PHAROS, PHAROS 2.0, incorporating improvements in both of the previously mentioned aspects. In the motion capture aspect, we are now able to indicate the degree of completeness of each exercise, identifying the part that has not been done correctly, and a real-time performance correction. In this way, the recommender system receives a greater amount of information and so can more accurately indicate the exercise to be performed. In terms of the recommender system, an algorithm was developed to weigh the performance, temporal evolution and preferences, providing a more accurate recommendation, as well as expanding the recommendation to a batch of exercises, instead of just one.
The increase of variable renewable energy generation has brought several new challenges to power and energy systems. Solutions based on storage systems and consumption flexibility are being proposed to balance the variability from generation sources that depend directly on environmental conditions. The widespread use of electric vehicles is seen as a resource that includes both distributed storage capabilities and the potential for consumption (charging) flexibility. However, to take advantage of the full potential of electric vehicles’ flexibility, it is essential that proper incentives are provided and that the management is performed with the variation of generation. This paper presents a research study on the impact of the variation of the electricity prices on the behavior of electric vehicle’s users. This study compared the benefits when using the variable and fixed charging prices. The variable prices are determined based on the calculation of distribution locational marginal pricing, which are recalculated and adapted continuously accordingly to the users’ trips and behavior. A travel simulation tool was developed for simulating real environments taking into account the behavior of real users. Results show that variable-rate of electricity prices demonstrate to be more advantageous to the users, enabling them to reduce charging costs while contributing to the required flexibility for the system.
In this paper we present an Ambient Intelligent System, the iGenda, and the integration of a wearable device. The aim is to detect emotional states through the wearable device and ultimately represent and manage the social emotion of a group of entities. The advantage of this action is that its usability is in line with retirement homes and similar places, where the community is extended and an harmonious environment is imperative. The iGenda serves has the visual interface and the information centre, receiving the information from the wearable device and managing the community emotion by sending information to the care-receivers, caregivers, or changing home parameters (like music or lighting) to achieve an specific emotion (such as calm or excitement). Thus the goal is to provide an affective system that directly interacts with humans by discreetly improving their lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.