Fabric is a modular and extensible open-source system for deploying and operating permissioned blockchains and one of the Hyperledger projects hosted by the Linux Foundation (www.hyperledger.org). Fabric is the first truly extensible blockchain system for running distributed applications. It supports modular consensus protocols, which allows the system to be tailored to particular use cases and trust models. Fabric is also the first blockchain system that runs distributed applications written in standard, general-purpose programming languages, without systemic dependency on a native cryptocurrency. This stands in sharp contrast to existing blockchain platforms that require "smart-contracts" to be written in domain-specific languages or rely on a cryptocurrency. Fabric realizes the permissioned model using a portable notion of membership, which may be integrated with industry-standard identity management. To support such flexibility, Fabric introduces an entirely novel blockchain design and revamps the way blockchains cope with nondeterminism, resource exhaustion, and performance attacks. This paper describes Fabric, its architecture, the rationale behind various design decisions, its most prominent implementation aspects, as well as its distributed application programming model. We further evaluate Fabric by implementing and benchmarking a Bitcoin-inspired digital currency. We show that Fabric achieves end-to-end throughput of more than 3500 transactions per second in certain popular deployment configurations, with sub-second latency, scaling well to over 100 peers.
International audienceFunctional encryption is a new paradigm in public-key encryption that allows users to finely control the amount of information that is revealed by a ciphertext to a given receiver. Recent papers have focused their attention on constructing schemes for general functionalities at expense of efficiency. Our goal, in this paper, is to construct functional encryption schemes for less general functionalities which are still expressive enough for practical scenarios. We propose a functional encryption scheme for the inner-product functionality, meaning that decrypting an encrypted vector x with a key for a vector y will reveal only ⟨x,y⟩ and noth- ing else, whose security is based on the DDH assumption. Despite the simplicity of this functionality, it is still useful in many contexts like descriptive statistics. In addition, we generalize our approach and present a generic scheme that can be instantiated, in addition, under the LWE assumption and offers various trade-offs in terms of expressiveness and efficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.