To evaluate whether hepatitis B virus (HBV) preS/S gene variability has any impact on serum hepatitis B surface antigen (HBsAg) levels and to analyze the replication capacity of naturally occurring preS/S variants, sera from 40 untreated patients with HBV-related chronic liver disease (hepatitis B e antigen [HBeAg]-positive, n 5 11; HBeAg-negative, n 5 29) were virologically characterized. Additionally, phenotypic analysis of three different preS/S variant isolates (carrying a 183-nucleotide deletion within the preS1 region, the deletion of preS2 start codon, and a stop signal at codon 182 within the S gene, respectively) was performed. HBV infecting 14 (35%) patients had single or multiple preS/S genomic mutations (i.e., preS1 and/or preS2 deletions, preS2 start codon mutations, C-terminally truncated and/or ''a'' determinant mutated S protein). Presence of preS/S variants negatively correlated with HBsAg titers (r 5 20.431; P 5 0.005) and its prevalence did not significantly differ between HBeAg-positive and HBeAg-negative patients. No correlation was found between HBsAg and HBV DNA levels in patients infected with preS/S mutants, whereas a significant correlation was found between HBsAg and viremia levels (r 5 0.607; P 5 0.001) in patients infected with wild-type HBV strains. HepG2 cells replicating the abovementioned three preS/S variants showed significant reduction of HBsAg secretion, retention of envelope proteins in the endoplasmic reticulum, less efficient virion secretion and nuclear accumulation of significantly higher amounts of covalently closed circular DNA compared with wild-type HBV replicating cells. Conclusion: In patients infected with preS/S variants, HBV DNA replication and HBsAg synthesis/secretion appear to be dissociated. Therefore, the use of HBsAg titer as diagnostic/prognostic tool has to take into account the frequent emergence of preS/S variants in chronic HBV infection. (HEPATOLOGY 2012;56:434-443) See Editorial on Page 411 H epatitis B virus (HBV) belongs to the Hepadnaviridae family, which comprises hepatotropic DNA viruses sharing with HBV most of the genetic structure and replicative characteristics. 1 HBV is one of the smallest viruses in nature and its genome presents a highly compact genetic organization. It consists of a partially double-stranded relaxed circular DNA of approximately 3,200 nucleotides in length and contains four partially overlapping open-reading frames: preS/S, pre-C-C, P, and X. The preS/S openreading frame encodes three different, structurally related envelope proteins termed the large (L), middle (M), and small (S) protein that are synthesized from alternative initiation codons. The three proteins share the same carboxy-terminus part but have different aminoterminal extensions. In particular, the S protein-corresponding to the HBV surface antigen (HBsAg)-consists of only 226 amino acids (aa), the M protein contains an extra N-terminal extension of 55 aa, and the L
Dentin is a vital, hydrated composite tissue with structural components and properties that vary in the different topographic portions of the teeth. These variations have a significant implication for biomechanical teeth properties and for the adhesive systems utilized in conservative dentistry. The aim of this study is to analyse the root canal dentin going from coronal to apical zone to find the ratio between the intertubular dentin area and the surface occupied by dentin tubules varies. Observations were conducted on 30 healthy premolar teeth extracted for orthodontic reasons in patients aged between 10 and 14. A SEM analysis of the data obtained in different canal portions showed that, in the coronal zone, dentinal tubules had a greater diameter (4.32 μm) than the middle zone (3.74 μm) and the apical zone (1.73 μm). The average number of dentinal tubules (in an area of 1 mm2) was similar in coronal zone (46,798 ± 10,644) and apical zone (45,192 ± 10,888), while in the middle zone they were lower in number (30,940 ± 7,651). However, intertubular dentin area was bigger going from apical to coronal portion. The differences between the analysed areas must be considered for the choice of the adhesive system.
Periodontal disease is characterized by inflammation and bone loss. The balance between inflammatory mediators and their counter-regulatory molecules may be fundamental for determining the outcome of the immune pathology of periodontal disease. Transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) represent a family of polypeptide proteins involved in the inflammation and regulation of immune responses, especially in rheumatic disease. The relationship between these growth factors and periodontitis has resulted in a new field of osteoimmunology and provides a context for better understanding the pathogenesis of periodontal disease. Therefore, the aim of this study was to compare the protein expression profile of these inflammatory mediators in 90 patients divided in three groups: healthy control, chronic periodontitis and in rheumatic disease, scleroderma. The findings presented here highlight that biomarkers, such as TGF-β1 and VEGF, play a key role in the evolution of the immune response, which in turn influences the outcome of disease establishment.
Biofilms are a serious problem, cause of severe inconvenience in the biomedical, food and industrial environment. Staphylococcus aureus and S. epidermidis are important pathogenic bacteria able to form thick and resistant biofilms on various surfaces. Therefore, strategies aimed at preventing or at least interfering with the initial adhesion and subsequent biofilm formation are a considerable achievement. The aim of this study was to evaluate the effect of alkaline pH on bacterial adhesion and further biofilm formation of S. aureus and S. epidermidis strains by biofilm biomass, cell‐surface hydrophobicity, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analysis. The results demonstrated that the amount of biofilm biomass formed and the surface hydrophobicity were significantly less than what were observed at higher levels of pH. SEM and CLSM images revealed a poorly structured and very thin biofilm (2.5–3 times thinner than that of the controls). The inhibiting effect of the alkaline pH on the bacterial attachment impaired the normal development of biofilm that arrested at the microcolony stage. Alkaline formulations could be promising towards the control of bacterial colonization and therefore the reduction of the biofilm‐related hazard. In the clinical setting, alkaline solutions or cleaners could be promising to prevent the bacterial colonization, by treating surfaces such as catheters or indwelling medical devices, reducing the risk of biofilm related infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.